Bailey, Reynold
A Neural Active Inference Model of Perceptual-Motor Learning
Yang, Zhizhuo, Diaz, Gabriel J., Fajen, Brett R., Bailey, Reynold, Ororbia, Alexander
The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience that can produce human-like behavior through reward-based learning. In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans through the systematic investigation of a visual-motor task that has been well-explored -- that of intercepting a target moving over a ground plane. Previous research demonstrated that humans performing this task resorted to anticipatory changes in speed intended to compensate for semi-predictable changes in target speed later in the approach. To capture this behavior, our proposed "neural" AIF agent uses artificial neural networks to select actions on the basis of a very short term prediction of the information about the task environment that these actions would reveal along with a long-term estimate of the resulting cumulative expected free energy. Systematic variation revealed that anticipatory behavior emerged only when required by limitations on the agent's movement capabilities, and only when the agent was able to estimate accumulated free energy over sufficiently long durations into the future. In addition, we present a novel formulation of the prior function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy. Together, these results demonstrate the use of AIF as a plausible model of anticipatory visually guided behavior in humans.
Differential Privacy for Eye-Tracking Data
Liu, Ao, Xia, Lirong, Duchowski, Andrew, Bailey, Reynold, Holmqvist, Kenneth, Jain, Eakta
As large eye-tracking datasets are created, data privacy is a pressing concern for the eye-tracking community. De-identifying data does not guarantee privacy because multiple datasets can be linked for inferences. A common belief is that aggregating individuals' data into composite representations such as heatmaps protects the individual. However, we analytically examine the privacy of (noise-free) heatmaps and show that they do not guarantee privacy. We further propose two noise mechanisms that guarantee privacy and analyze their privacy-utility tradeoff. Analysis reveals that our Gaussian noise mechanism is an elegant solution to preserve privacy for heatmaps. Our results have implications for interdisciplinary research to create differentially private mechanisms for eye tracking.
Multimodal Alignment for Affective Content
Haduong, Nikita (Indiana University) | Nester, David (Eastern Mennonite University) | Vaidyanathan, Preethi (Rochester Institute of Technology) | Prud' (Rochester Institute of Technology) | hommeaux, Emily (Rochester Institute of Technology) | Bailey, Reynold (Rochester Institute of Technology) | Alm, Cecilia O.
Humans routinely extract important information from images and videos, relying on their gaze. In contrast, computational systems still have difficulty annotating important visual information in a human-like manner, in part because human gaze is often not included in the modeling process. Human input is also particularly relevant for processing and interpreting affective visual information. To address this challenge, we captured human gaze, spoken language, and facial expressions simultaneously in an experiment with visual stimuli characterized by subjective and affective content. Observers described the content of complex emotional images and videos depicting positive and negative scenarios and also their feelings about the imagery being viewed. We explore patterns of these modalities, for example by comparing the affective nature of participant-elicited linguistic tokens with image valence. Additionally, we expand a framework for generating automatic alignments between the gaze and spoken language modalities for visual annotation of images. Multimodal alignment is challenging due to their varying temporal offset. We explore alignment robustness when images have affective content and whether image valence influences alignment results. We also study if word frequency-based filtering impacts results, with both the unfiltered and filtered scenarios performing better than baseline comparisons, and with filtering resulting in a substantial decrease in alignment error rate. We provide visualizations of the resulting annotations from multimodal alignment. This work has implications for areas such as image understanding, media accessibility, and multimodal data fusion.
Using Co-Captured Face, Gaze, and Verbal Reactions to Images of Varying Emotional Content for Analysis and Semantic Alignment
Gangji, Aliya (Muhlenberg College) | Walden, Trevor (Rochester Institute of Technology) | Vaidyanathan, Preethi (Rochester Institute of Technology) | Prud' (Rochester Institute of Technology) | hommeaux, Emily (Rochester Institute of Technology) | Bailey, Reynold (Rochester Institute of Technology) | Alm, Cecilia O.
Analyzing different modalities of expression can provide insights into the ways that humans interpret, label, and react to images. Such insights have the potential not only to advance our understanding of how humans coordinate these expressive modalities but also to enhance existing methodologies for common AI tasks such as image annotation and classification.We conducted an experiment that co-captured the facial expressions, eye movements, and spoken language data that observers produce while examining images of varying emotional content and responding to description-oriented vs. affect-oriented questions about those images. We analyzed the facial expressions produced by the observers in order to determine the connection between those expressions and an image's emotional content. We also explored the relationship between the valence of an image and the verbal responses to that image, and how that relationship relates to the nature of the prompt, using low-level lexical features and more complex affective features extracted from the observers' verbal responses.Finally, in order to integrate this multimodal data, we extended an existing bitext alignment framework to create meaningful pairings between narrated observations about images and the image regions indicated by eye movement data. The resulting annotations of image regions with words from observers' responses demonstrate the potential of bitext alignment for multimodal data integration and, from an application perspective, for annotation of open-domain images. In addition, we found that while responses to affect-oriented questions appear useful for image understanding, their holistic nature seems less helpful for image region annotation.