Bai, Xiang
MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting
Yu, Liang, Tu, Lai, Bai, Xiang
Multivariate time-series forecasting holds immense value across diverse applications, requiring methods to effectively capture complex temporal and inter-variable dynamics. A key challenge lies in uncovering the intrinsic patterns that govern predictability, beyond conventional designs, focusing on network architectures to explore latent relationships or temporal dependencies. Inspired by signal decomposition, this paper posits that time series predictability is derived from periodic characteristics at different frequencies. Consequently, we propose a novel time series forecasting method based on multi-frequency reference series correlation analysis. Through spectral analysis on long-term training data, we identify dominant spectral components and their harmonics to design base-pattern reference series. Unlike signal decomposition, which represents the original series as a linear combination of basis signals, our method uses a transformer model to compute cross-attention between the original series and reference series, capturing essential features for forecasting. Experiments on major open and synthetic datasets show state-of-the-art performance. Furthermore, by focusing on attention with a small number of reference series rather than pairwise variable attention, our method ensures scalability and broad applicability. The source code is available at: https://github.com/yuliang555/MFRS
OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models
Yu, Wenwen, Yang, Zhibo, Wan, Jianqiang, Song, Sibo, Tang, Jun, Cheng, Wenqing, Liu, Yuliang, Bai, Xiang
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding and the emergence of large language models capable of processing document-based questions. While various methods have been proposed to tackle the complexities of VsTP, existing solutions often rely on task-specific architectures and objectives for individual tasks. This leads to modal isolation and complex workflows due to the diversified targets and heterogeneous schemas. In this paper, we introduce OmniParser V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis, into a unified framework. Central to our approach is the proposed Structured-Points-of-Thought (SPOT) prompting schemas, which improves model performance across diverse scenarios by leveraging a unified encoder-decoder architecture, objective, and input\&output representation. SPOT eliminates the need for task-specific architectures and loss functions, significantly simplifying the processing pipeline. Our extensive evaluations across four tasks on eight different datasets show that OmniParser V2 achieves state-of-the-art or competitive results in VsTP. Additionally, we explore the integration of SPOT within a multimodal large language model structure, further enhancing text localization and recognition capabilities, thereby confirming the generality of SPOT prompting technique. The code is available at \href{https://github.com/AlibabaResearch/AdvancedLiterateMachinery}{AdvancedLiterateMachinery}.
Training-free Ultra Small Model for Universal Sparse Reconstruction in Compressed Sensing
Tang, Chaoqing, Zhuang, Huanze, Tian, Guiyun, Zeng, Zhenli, Ding, Yi, Liu, Wenzhong, Bai, Xiang
Pre-trained large models attract widespread attention in recent years, but they face challenges in applications that require high interpretability or have limited resources, such as physical sensing, medical imaging, and bioinformatics. Compressed Sensing (CS) is a well-proved theory that drives many recent breakthroughs in these applications. However, as a typical under-determined linear system, CS suffers from excessively long sparse reconstruction times when using traditional iterative methods, particularly with large-scale data. Current AI methods like deep unfolding fail to substitute them because pre-trained models exhibit poor generality beyond their training conditions and dataset distributions, or lack interpretability. Instead of following the big model fervor, this paper proposes ultra-small artificial neural models called coefficients learning (CL), enabling training-free and rapid sparse reconstruction while perfectly inheriting the generality and interpretability of traditional iterative methods, bringing new feature of incorporating prior knowledges. In CL, a signal of length $n$ only needs a minimal of $n$ trainable parameters. A case study model called CLOMP is implemented for evaluation. Experiments are conducted on both synthetic and real one-dimensional and two-dimensional signals, demonstrating significant improvements in efficiency and accuracy. Compared to representative iterative methods, CLOMP improves efficiency by 100 to 1000 folds for large-scale data. Test results on eight diverse image datasets indicate that CLOMP improves structural similarity index by 292%, 98%, 45% for sampling rates of 0.1, 0.3, 0.5, respectively. We believe this method can truly usher CS reconstruction into the AI era, benefiting countless under-determined linear systems that rely on sparse solution.
OCRBench v2: An Improved Benchmark for Evaluating Large Multimodal Models on Visual Text Localization and Reasoning
Fu, Ling, Yang, Biao, Kuang, Zhebin, Song, Jiajun, Li, Yuzhe, Zhu, Linghao, Luo, Qidi, Wang, Xinyu, Lu, Hao, Huang, Mingxin, Li, Zhang, Tang, Guozhi, Shan, Bin, Lin, Chunhui, Liu, Qi, Wu, Binghong, Feng, Hao, Liu, Hao, Huang, Can, Tang, Jingqun, Chen, Wei, Jin, Lianwen, Liu, Yuliang, Bai, Xiang
Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest recently. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities on certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10,000 human-verified question-answering pairs and a high proportion of difficult samples. After carefully benchmarking state-of-the-art LMMs on OCRBench v2, we find that 20 out of 22 LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The benchmark and evaluation scripts are available at https://github.com/Yuliang-liu/MultimodalOCR.
RSL-SQL: Robust Schema Linking in Text-to-SQL Generation
Cao, Zhenbiao, Zheng, Yuanlei, Fan, Zhihao, Zhang, Xiaojin, Chen, Wei, Bai, Xiang
Text-to-SQL generation aims to translate natural language questions into SQL statements. In Text-to-SQL based on large language models, schema linking is a widely adopted strategy to streamline the input for LLMs by selecting only relevant schema elements, therefore reducing noise and computational overhead. However, schema linking faces risks that require caution, including the potential omission of necessary elements and disruption of database structural integrity. To address these challenges, we propose a novel framework called RSL-SQL that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction. We improve the recall of pattern linking using forward and backward pruning methods, achieving a strict recall of 94% while reducing the number of input columns by 83%. Furthermore, it hedges the risk by voting between a full mode and a simplified mode enhanced with contextual information. Experiments on the BIRD and Spider benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on Spider using GPT-4o. Furthermore, our approach outperforms a series of GPT-4 based Text-to-SQL systems when adopting DeepSeek (much cheaper) with same intact prompts. Extensive analysis and ablation studies confirm the effectiveness of each component in our framework. The codes are available at https://github.com/Laqcce-cao/RSL-SQL.
R-CoT: Reverse Chain-of-Thought Problem Generation for Geometric Reasoning in Large Multimodal Models
Deng, Linger, Liu, Yuliang, Li, Bohan, Luo, Dongliang, Wu, Liang, Zhang, Chengquan, Lyu, Pengyuan, Zhang, Ziyang, Zhang, Gang, Ding, Errui, Zhu, Yingying, Bai, Xiang
Existing Large Multimodal Models (LMMs) struggle with mathematical geometric reasoning due to a lack of high-quality image-text paired data. Current geometric data generation approaches, which apply preset templates to generate geometric data or use Large Language Models (LLMs) to rephrase questions and answers (Q&A), unavoidably limit data accuracy and diversity. To synthesize higherquality data, we propose a two-stage Reverse Chain-of-Thought (R-CoT) geometry problem generation pipeline. First, we introduce GeoChain to produce highfidelity geometric images and corresponding descriptions highlighting relations among geometric elements. We then design a Reverse A&Q method that reasons step-by-step based on the descriptions and generates questions in reverse from the reasoning results. Experiments demonstrate that the proposed method brings significant and consistent improvements on multiple LMM baselines, achieving new performance records in the 2B, 7B, and 8B settings. Notably, R-CoT-8B significantly outperforms previous state-of-the-art open-source mathematical models by 16.6% on MathVista and 9.2% on GeoQA, while also surpassing the closedsource model GPT-4o by an average of 13% across both datasets. The code is available at https://github.com/dle666/R-CoT. Large Language Models (LLMs) exhibit excellent reasoning capabilities and draw extensive attention from the artificial intelligence research community (Lu et al., 2023b) to mathematical problemsolving in textual form (Chen et al., 2024b; Liao et al., 2024; Zhou et al., 2024; Zhao et al., 2024b; Zhou & Zhao, 2024; Kim et al., 2024). However, LLMs still struggle to solve mathematical problems involving images that require visual comprehension. Geometry problems, as typical mathematical problems with images, play an important role in evaluating mathematical reasoning skills (Zhang et al., 2023c), requiring a high level of visual comprehension. Besides, even though some problems are not related to geometry on the surface, they require the same skills for models (e.g., fine-grained image comprehension skills and multi-step reasoning skills). With the appearance of o1 (OpenAI, 2024), GPT-4o (Islam & Moushi, 2024), Gemini (Team et al., 2023), and numerous Large Multimodal Models (LMMs) (Li et al., 2024a; Liu et al., 2024; Chen et al., 2024d; Bai et al., 2023), recent researches progressively investigate using LMMs to solve mathematical geometry problems. Although LMMs show impressive results in general visual question-answering (VQA) tasks (Fan et al., 2024; Liu et al., 2024), they still face challenges in solving mathematical geometry problems. Adjust values in the question and generate answers.
VIRT: Vision Instructed Transformer for Robotic Manipulation
Li, Zhuoling, Ren, Liangliang, Yang, Jinrong, Zhao, Yong, Wu, Xiaoyang, Xu, Zhenhua, Bai, Xiang, Zhao, Hengshuang
Robotic manipulation, owing to its multi-modal nature, often faces significant training ambiguity, necessitating explicit instructions to clearly delineate the manipulation details in tasks. In this work, we highlight that vision instruction is naturally more comprehensible to recent robotic policies than the commonly adopted text instruction, as these policies are born with some vision understanding ability like human infants. Building on this premise and drawing inspiration from cognitive science, we introduce the robotic imagery paradigm, which realizes large-scale robotic data pre-training without text annotations. Additionally, we propose the robotic gaze strategy that emulates the human eye gaze mechanism, thereby guiding subsequent actions and focusing the attention of the policy on the manipulated object. Leveraging these innovations, we develop VIRT, a fully Transformer-based policy. We design comprehensive tasks using both a physical robot and simulated environments to assess the efficacy of VIRT. The results indicate that VIRT can complete very competitive tasks like "opening the lid of a tightly sealed bottle", and the proposed techniques boost the success rates of the baseline policy on diverse challenging tasks from nearly 0% to more than 65%. The key insight that supports this work is existing robotic policies are akin to human infants, who are born with visual perception and reasoning abilities but do not comprehend natural language according to previous cognitive science literature (Colombo & Mitchell, 2009). Specifically, visual signal serves as the primary information source of recent robotic policies, and the backbones of these policies are pre-trained with large-scale image datasets before the robotic data based training (He et al., 2016; Oquab et al., 2024). Therefore, the policies begin with a basic visual understanding capability like human infants. By contrast, natural language inputs are rarely incorporated into the process of pre-training these backbones, suggesting the lack of natural language knowledge in these policies.
PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling
Xie, Xudong, Yin, Liang, Yan, Hao, Liu, Yang, Ding, Jing, Liao, Minghui, Liu, Yuliang, Chen, Wei, Bai, Xiang
Document understanding is a challenging task to process and comprehend large amounts of textual and visual information. Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task. However, existing methods typically focus on either plain text or a limited number of document images, struggling to handle long PDF documents with interleaved text and images, especially in academic papers. In this paper, we introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents. PDF-WuKong incorporates a sparse sampler that operates on both text and image representations, significantly improving the efficiency and capability of the MLLM. The sparse sampler is integrated with the MLLM's image encoder and selects the paragraphs or diagrams most pertinent to user queries for processing by the language model. To effectively train and evaluate our model, we construct PaperPDF, a dataset consisting of a broad collection of academic papers sourced from arXiv, multiple strategies are proposed to generate automatically 1M QA pairs along with their corresponding evidence sources. Experimental results demonstrate the superiority and high efficiency of our approach over other models on the task of long multimodal PDF understanding, surpassing proprietary products by an average of 8.6% on F1. Our code and dataset will be released at https://github.com/yh-hust/PDF-Wukong.
Deciphering Oracle Bone Language with Diffusion Models
Guan, Haisu, Yang, Huanxin, Wang, Xinyu, Han, Shengwei, Liu, Yongge, Jin, Lianwen, Bai, Xiang, Liu, Yuliang
Originating from China's Shang Dynasty approximately 3,000 years ago, the Oracle Bone Script (OBS) is a cornerstone in the annals of linguistic history, predating many established writing systems. Despite the discovery of thousands of inscriptions, a vast expanse of OBS remains undeciphered, casting a veil of mystery over this ancient language. The emergence of modern AI technologies presents a novel frontier for OBS decipherment, challenging traditional NLP methods that rely heavily on large textual corpora, a luxury not afforded by historical languages. This paper introduces a novel approach by adopting image generation techniques, specifically through the development of Oracle Bone Script Decipher (OBSD). Utilizing a conditional diffusion-based strategy, OBSD generates vital clues for decipherment, charting a new course for AI-assisted analysis of ancient languages. To validate its efficacy, extensive experiments were conducted on an oracle bone script dataset, with quantitative results demonstrating the effectiveness of OBSD. Code and decipherment results will be made available at https://github.com/guanhaisu/OBSD.
VimTS: A Unified Video and Image Text Spotter for Enhancing the Cross-domain Generalization
Liu, Yuliang, Huang, Mingxin, Yan, Hao, Deng, Linger, Wu, Weijia, Lu, Hao, Shen, Chunhua, Jin, Lianwen, Bai, Xiang
Text spotting, a task involving the extraction of textual information from image or video sequences, faces challenges in cross-domain adaption, such as image-to-image and image-to-video generalization. In this paper, we introduce a new method, termed VimTS, which enhances the generalization ability of the model by achieving better synergy among different tasks. Typically, we propose a Prompt Queries Generation Module and a Tasks-aware Adapter to effectively convert the original single-task model into a multi-task model suitable for both image and video scenarios with minimal additional parameters. The Prompt Queries Generation Module facilitates explicit interaction between different tasks, while the Tasks-aware Adapter helps the model dynamically learn suitable features for each task. Additionally, to further enable the model to learn temporal information at a lower cost, we propose a synthetic video text dataset (VTD-368k) by leveraging the Content Deformation Fields (CoDeF) algorithm. Notably, our method outperforms the state-of-the-art method by an average of 2.6% in six cross-domain benchmarks such as TT-to-IC15, CTW1500-to-TT, and TT-to-CTW1500. For video-level cross-domain adaption, our method even surpasses the previous end-to-end video spotting method in ICDAR2015 video and DSText v2 by an average of 5.5% on the MOTA metric, using only image-level data. We further demonstrate that existing Large Multimodal Models exhibit limitations in generating cross-domain scene text spotting, in contrast to our VimTS model which requires significantly fewer parameters and data. The code and datasets will be made available at the https://VimTextSpotter.github.io.