Goto

Collaborating Authors

 Bai, Ting


BaiJia: A Large-Scale Role-Playing Agent Corpus of Chinese Historical Characters

arXiv.org Artificial Intelligence

We introduce a comprehensive large-scale role-playing agent corpus, termed BaiJia, that comprises various Chinese historical characters. This corpus is noteworthy for being the pioneering compilation of low-resource data that can be utilized in large language models (LLMs) to engage in AI-driven historical role-playing agents. BaiJia addresses the challenges in terms of fragmented historical textual records in different forms and modalities, integrating various characters' information, including their biographical, literary, family relations, historical events, and so on. We conduct extensive experiments to demonstrate the effectiveness of our BaiJia agent corpus in bolstering the role-playing abilities of various foundational LLMs, and promoting the development and assessment of LLMs in the context of historical role-playing tasks. The agent corpus is available at baijia.online.


GraphLoRA: Empowering LLMs Fine-Tuning via Graph Collaboration of MoE

arXiv.org Artificial Intelligence

Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning method that has been widely adopted in various downstream applications of LLMs. Together with the Mixture-of-Expert (MoE) technique, fine-tuning approaches have shown remarkable improvements in model capability. However, the coordination of multiple experts in existing studies solely relies on the weights assigned by the simple router function. Lack of communication and collaboration among experts exacerbate the instability of LLMs due to the imbalance load problem of MoE. To address this issue, we propose a novel MoE graph-based LLM fine-tuning framework GraphLoRA, in which a graph router function is designed to capture the collaboration signals among experts by graph neural networks (GNNs). GraphLoRA enables all experts to understand input knowledge and share information from neighbor experts by aggregating operations. Besides, to enhance each expert's capability and their collaborations, we design two novel coordination strategies: the Poisson distribution-based distinction strategy and the Normal distribution-based load balance strategy. Extensive experiments on four real-world datasets demonstrate the effectiveness of our GraphLoRA in parameter-efficient fine-tuning of LLMs, showing the benefits of facilitating collaborations of multiple experts in the graph router of GraphLoRA.


KG-Retriever: Efficient Knowledge Indexing for Retrieval-Augmented Large Language Models

arXiv.org Artificial Intelligence

Large language models with retrieval-augmented generation encounter a pivotal challenge in intricate retrieval tasks, e.g., multi-hop question answering, which requires the model to navigate across multiple documents and generate comprehensive responses based on fragmented information. To tackle this challenge, we introduce a novel Knowledge Graph-based RAG framework with a hierarchical knowledge retriever, termed KG-Retriever. The retrieval indexing in KG-Retriever is constructed on a hierarchical index graph that consists of a knowledge graph layer and a collaborative document layer. The associative nature of graph structures is fully utilized to strengthen intra-document and inter-document connectivity, thereby fundamentally alleviating the information fragmentation problem and meanwhile improving the retrieval efficiency in cross-document retrieval of LLMs. With the coarse-grained collaborative information from neighboring documents and concise information from the knowledge graph, KG-Retriever achieves marked improvements on five public QA datasets, showing the effectiveness and efficiency of our proposed RAG framework.


Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval

arXiv.org Artificial Intelligence

As LLMs exhibit a high degree of human-like capability, increasing attention has been paid to role-playing research areas in which responses generated by LLMs are expected to mimic human replies. This has promoted the exploration of role-playing agents in various applications, such as chatbots that can engage in natural conversations with users and virtual assistants that can provide personalized support and guidance. The crucial factor in the role-playing task is the effective utilization of character memory, which stores characters' profiles, experiences, and historical dialogues. Retrieval Augmented Generation (RAG) technology is used to access the related memory to enhance the response generation of role-playing agents. Most existing studies retrieve related information based on the semantic similarity of memory to maintain characters' personalized traits, and few attempts have been made to incorporate the emotional factor in the retrieval argument generation (RAG) of LLMs. Inspired by the Mood-Dependent Memory theory, which indicates that people recall an event better if they somehow reinstate during recall the original emotion they experienced during learning, we propose a novel emotion-aware memory retrieval framework, termed Emotional RAG, which recalls the related memory with consideration of emotional state in role-playing agents. Specifically, we design two kinds of retrieval strategies, i.e., combination strategy and sequential strategy, to incorporate both memory semantic and emotional states during the retrieval process. Extensive experiments on three representative role-playing datasets demonstrate that our Emotional RAG framework outperforms the method without considering the emotional factor in maintaining the personalities of role-playing agents. This provides evidence to further reinforce the Mood-Dependent Memory theory in psychology.


Learning Social Graph for Inactive User Recommendation

arXiv.org Artificial Intelligence

Social relations have been widely incorporated into recommender systems to alleviate data sparsity problem. However, raw social relations don't always benefit recommendation due to their inferior quality and insufficient quantity, especially for inactive users, whose interacted items are limited. In this paper, we propose a novel social recommendation method called LSIR (\textbf{L}earning \textbf{S}ocial Graph for \textbf{I}nactive User \textbf{R}ecommendation) that learns an optimal social graph structure for social recommendation, especially for inactive users. LSIR recursively aggregates user and item embeddings to collaboratively encode item and user features. Then, graph structure learning (GSL) is employed to refine the raw user-user social graph, by removing noisy edges and adding new edges based on the enhanced embeddings. Meanwhile, mimic learning is implemented to guide active users in mimicking inactive users during model training, which improves the construction of new edges for inactive users. Extensive experiments on real-world datasets demonstrate that LSIR achieves significant improvements of up to 129.58\% on NDCG in inactive user recommendation. Our code is available at~\url{https://github.com/liun-online/LSIR}.


Towards Graph Foundation Models: A Survey and Beyond

arXiv.org Artificial Intelligence

Foundation models have emerged as critical components in a variety of artificial intelligence applications, and showcase significant success in natural language processing and several other domains. Meanwhile, the field of graph machine learning is witnessing a paradigm transition from shallow methods to more sophisticated deep learning approaches. The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm. This paradigm envisions models that are pre-trained on extensive graph data and can be adapted for various graph tasks. Despite this burgeoning interest, there is a noticeable lack of clear definitions and systematic analyses pertaining to this new domain. To this end, this article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies. We proceed to classify the existing work related to GFMs into three distinct categories, based on their dependence on graph neural networks and large language models. In addition to providing a thorough review of the current state of GFMs, this article also outlooks potential avenues for future research in this rapidly evolving domain.


Information Retrieval Meets Large Language Models: A Strategic Report from Chinese IR Community

arXiv.org Artificial Intelligence

The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.


Directed Acyclic Graph Factorization Machines for CTR Prediction via Knowledge Distillation

arXiv.org Artificial Intelligence

With the growth of high-dimensional sparse data in web-scale recommender systems, the computational cost to learn high-order feature interaction in CTR prediction task largely increases, which limits the use of high-order interaction models in real industrial applications. Some recent knowledge distillation based methods transfer knowledge from complex teacher models to shallow student models for accelerating the online model inference. However, they suffer from the degradation of model accuracy in knowledge distillation process. It is challenging to balance the efficiency and effectiveness of the shallow student models. To address this problem, we propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation. The proposed lightweight student model DAGFM can learn arbitrary explicit feature interactions from teacher networks, which achieves approximately lossless performance and is proved by a dynamic programming algorithm. Besides, an improved general model KD-DAGFM+ is shown to be effective in distilling both explicit and implicit feature interactions from any complex teacher model. Extensive experiments are conducted on four real-world datasets, including a large-scale industrial dataset from WeChat platform with billions of feature dimensions. KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments, showing the superiority of DAGFM to deal with the industrial scale data in CTR prediction task. Our implementation code is available at: https://github.com/RUCAIBox/DAGFM.


Relation-aware Hierarchical Attention Framework for Video Question Answering

arXiv.org Artificial Intelligence

Video Question Answering (VideoQA) is a challenging video understanding task since it requires a deep understanding of both question and video. Previous studies mainly focus on extracting sophisticated visual and language embeddings, fusing them by delicate hand-crafted networks.However, the relevance of different frames, objects, and modalities to the question are varied along with the time, which is ignored in most of existing methods. Lacking understanding of the the dynamic relationships and interactions among objects brings a great challenge to VideoQA task.To address this problem, we propose a novel Relation-aware Hierarchical Attention (RHA) framework to learn both the static and dynamic relations of the objects in videos. In particular, videos and questions are embedded by pre-trained models firstly to obtain the visual and textual features. Then a graph-based relation encoder is utilized to extract the static relationship between visual objects.To capture the dynamic changes of multimodal objects in different video frames, we consider the temporal, spatial, and semantic relations, and fuse the multimodal features by hierarchical attention mechanism to predict the answer. We conduct extensive experiments on a large scale VideoQA dataset, and the experimental results demonstrate that our RHA outperforms the state-of-the-art methods.


A Long-Short Demands-Aware Model for Next-Item Recommendation

arXiv.org Machine Learning

Recommending the right products is the central problem in recommender systems, but the right products should also be recommended at the right time to meet the demands of users, so as to maximize their values. Users' demands, implying strong purchase intents, can be the most useful way to promote products sales if well utilized. Previous recommendation models mainly focused on user's general interests to find the right products. However, the aspect of meeting users' demands at the right time has been much less explored. To address this problem, we propose a novel Long-Short Demands-aware Model (LSDM), in which both user's interests towards items and user's demands over time are incorporated. We summarize two aspects: termed as long-time demands (e.g., purchasing the same product repetitively showing a long-time persistent interest) and short-time demands (e.g., co-purchase like buying paintbrushes after pigments). To utilize such long-short demands of users, we create different clusters to group the successive product purchases together according to different time spans, and use recurrent neural networks to model each sequence of clusters at a time scale. The long-short purchase demands with multi-time scales are finally aggregated by joint learning strategies. Experimental results on three real-world commerce datasets demonstrate the effectiveness of our model for next-item recommendation, showing the usefulness of modeling users' long-short purchase demands of items with multi-time scales.