Goto

Collaborating Authors

 Bafghi, Reza Akbarian


Aligning to What? Limits to RLHF Based Alignment

arXiv.org Artificial Intelligence

Reinforcement Learning from Human Feedback (RLHF) is increasingly used to align large language models (LLMs) with human preferences. However, the effectiveness of RLHF in addressing underlying biases remains unclear. This study investigates the relationship between RLHF and both covert and overt biases in LLMs, particularly focusing on biases against African Americans. We applied various RLHF techniques (DPO, ORPO, and RLOO) to Llama 3 8B and evaluated the covert and overt biases of the resulting models using matched-guise probing and explicit bias testing. We performed additional tests with DPO on different base models and datasets; among several implications, we found that SFT before RLHF calcifies model biases. Additionally, we extend the tools for measuring biases to multi-modal models. Through our experiments we collect evidence that indicates that current alignment techniques are inadequate for nebulous tasks such as mitigating covert biases, highlighting the need for capable datasets, data curating techniques, or alignment tools.


Where Did Your Model Learn That? Label-free Influence for Self-supervised Learning

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) has revolutionized learning from large-scale unlabeled datasets, yet the intrinsic relationship between pretraining data and the learned representations remains poorly understood. Traditional supervised learning benefits from gradient-based data attribution tools like influence functions that measure the contribution of an individual data point to model predictions. However, existing definitions of influence rely on labels, making them unsuitable for SSL settings. We address this gap by introducing Influence-SSL, a novel and label-free approach for defining influence functions tailored to SSL. Our method harnesses the stability of learned representations against data augmentations to identify training examples that help explain model predictions. We provide both theoretical foundations and empirical evidence to show the utility of Influence-SSL in analyzing pre-trained SSL models. Our analysis reveals notable differences in how SSL models respond to influential data compared to supervised models. Finally, we validate the effectiveness of Influence-SSL through applications in duplicate detection, outlier identification and fairness analysis. Code is available at: \url{https://github.com/cryptonymous9/Influence-SSL}.