Goto

Collaborating Authors

 Bach, Francis R.


Sparse probabilistic projections

Neural Information Processing Systems

We present a generative model for performing sparse probabilistic projections, which includes sparse principal component analysis and sparse canonical correlation analysis as special cases. Sparsity is enforced by means of automatic relevance determination or by imposing appropriate prior distributions, such as generalised hyperbolic distributions. We derive a variational Expectation-Maximisation algorithm for the estimation of the hyperparameters and show that our novel probabilistic approach compares favourably to existing techniques. We illustrate how the proposed method can be applied in the context of cryptoanalysis as a pre-processing tool for the construction of template attacks. Papers published at the Neural Information Processing Systems Conference.


Efficient Optimization for Discriminative Latent Class Models

Neural Information Processing Systems

Dimensionality reduction is commonly used in the setting of multi-label supervised classification to control the learning capacity and to provide a meaningful representation of the data. We introduce a simple forward probabilistic model which is a multinomial extension of reduced rank regression; we show that this model provides a probabilistic interpretation of discriminative clustering methods with added benefits in terms of number of hyperparameters and optimization. While expectation-maximization (EM) algorithm is commonly used to learn these models, its optimization usually leads to local minimum because it relies on a non-convex cost function with many such local minima. To avoid this problem, we introduce a local approximation of this cost function, which leads to a quadratic non-convex optimization problem over a product of simplices. In order to minimize such functions, we propose an efficient algorithm based on convex relaxation and low-rank representation of our data, which allows to deal with large instances.


Online Learning for Latent Dirichlet Allocation

Neural Information Processing Systems

We develop an online variational Bayes (VB) algorithm for Latent Dirichlet Allocation (LDA). Online LDA is based on online stochastic optimization with a natural gradient step, which we show converges to a local optimum of the VB objective function. It can handily analyze massive document collections, including those arriving in a stream. We study the performance of online LDA in several ways, including by fitting a 100-topic topic model to 3.3M articles from Wikipedia in a single pass. We demonstrate that online LDA finds topic models as good or better than those found with batch VB, and in a fraction of the time.


Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning

Neural Information Processing Systems

For supervised and unsupervised learning, positive definite kernels allow to use large and potentially infinite dimensional feature spaces with a computational cost that only depends on the number of observations. This is usually done through the penalization of predictor functions by Euclidean or Hilbertian norms. In this paper, we explore penalizing by sparsity-inducing norms such as the L1-norm or the block L1-norm. We assume that the kernel decomposes into a large sum of individual basis kernels which can be embedded in a directed acyclic graph; we show that it is then possible to perform kernel selection through a hierarchical multiple kernel learning framework, in polynomial time in the number of selected kernels. This framework is naturally applied to non linear variable selection; our extensive simulations on synthetic datasets and datasets from the UCI repository show that efficiently exploring the large feature space through sparsity-inducing norms leads to state-of-the-art predictive performance.


Multiple Operator-valued Kernel Learning

Neural Information Processing Systems

Positive definite operator-valued kernels generalize the well-known notion of reproducing kernels, and are naturally adapted to multi-output learning situations. This paper addresses the problem of learning a finite linear combination of infinite-dimensional operator-valued kernels which are suitable for extending functional data analysis methods to nonlinear contexts. We study this problem in the case of kernel ridge regression for functional responses with an lr-norm constraint on the combination coefficients. The resulting optimization problem is more involved than those of multiple scalar-valued kernel learning since operator-valued kernels pose more technical and theoretical issues. We propose a multiple operator-valued kernel learning algorithm based on solving a system of linear operator equations by using a block coordinate-descent procedure.


A Stochastic Gradient Method with an Exponential Convergence _Rate for Finite Training Sets

Neural Information Processing Systems

We propose a new stochastic gradient method for optimizing the sum of
 a finite set of smooth functions, where the sum is strongly convex.
 While standard stochastic gradient methods
 converge at sublinear rates for this problem, the proposed method incorporates a memory of previous gradient values in order to achieve a linear convergence 
rate. In a machine learning context, numerical experiments indicate that the new algorithm can dramatically outperform standard
 algorithms, both in terms of optimizing the training error and reducing the test error quickly.


Multiple Operator-valued Kernel Learning

Neural Information Processing Systems

Positive definite operator-valued kernels generalize the well-known notion of reproducing kernels, and are naturally adapted to multi-output learning situations. This paper addresses the problem of learning a finite linear combination of infinite-dimensional operator-valued kernels which are suitable for extending functional data analysis methods to nonlinear contexts. We study this problem in the case of kernel ridge regression for functional responses with an lr-norm constraint on the combination coefficients. The resulting optimization problem is more involved than those of multiple scalar-valued kernel learning since operator-valued kernels pose more technical and theoretical issues. We propose a multiple operator-valued kernel learning algorithm based on solving a system of linear operator equations by using a block coordinate-descent procedure. We experimentally validate our approach on a functional regression task in the context of finger movement prediction in brain-computer interfaces.


Tree-dependent Component Analysis

arXiv.org Machine Learning

We present a generalization of independent component analysis (ICA), where instead of looking for a linear transform that makes the data components independent, we look for a transform that makes the data components well fit by a tree-structured graphical model. Treating the problem as a semiparametric statistical problem, we show that the optimal transform is found by minimizing a contrast function based on mutual information, a function that directly extends the contrast function used for classical ICA. We provide two approximations of this contrast function, one using kernel density estimation, and another using kernel generalized variance. This tree-dependent component analysis framework leads naturally to an efficient general multivariate density estimation technique where only bivariate density estimation needs to be performed.


Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning

Neural Information Processing Systems

We consider the minimization of a convex objective function defined on a Hilbert space, which is only available through unbiased estimates of its gradients. This problem includes standard machine learning algorithms such as kernel logistic regression and least-squares regression, and is commonly referred to as a stochastic approximation problem in the operations research community. We provide a non-asymptotic analysis of the convergence of two well-known algorithms, stochastic gradient descent (a.k.a.~Robbins-Monro algorithm) as well as a simple modification where iterates are averaged (a.k.a.~Polyak-Ruppert averaging). Our analysis suggests that a learning rate proportional to the inverse of the number of iterations, while leading to the optimal convergence rate in the strongly convex case, is not robust to the lack of strong convexity or the setting of the proportionality constant. This situation is remedied when using slower decays together with averaging, robustly leading to the optimal rate of convergence. We illustrate our theoretical results with simulations on synthetic and standard datasets.


Shaping Level Sets with Submodular Functions

Neural Information Processing Systems

We consider a class of sparsity-inducing regularization terms based on submodular functions. While previous work has focused on non-decreasing functions, we explore symmetric submodular functions and their \lova extensions. We show that the Lovasz extension may be seen as the convex envelope of a function that depends on level sets (i.e., the set of indices whose corresponding components of the underlying predictor are greater than a given constant): this leads to a class of convex structured regularization terms that impose prior knowledge on the level sets, and not only on the supports of the underlying predictors. We provide a unified set of optimization algorithms, such as proximal operators, and theoretical guarantees (allowed level sets and recovery conditions). By selecting specific submodular functions, we give a new interpretation to known norms, such as the total variation; we also define new norms, in particular ones that are based on order statistics with application to clustering and outlier detection, and on noisy cuts in graphs with application to change point detection in the presence of outliers.