Efficient Optimization for Discriminative Latent Class Models

Joulin, Armand, Ponce, Jean, Bach, Francis R.

Neural Information Processing Systems 

Dimensionality reduction is commonly used in the setting of multi-label supervised classification to control the learning capacity and to provide a meaningful representation of the data. We introduce a simple forward probabilistic model which is a multinomial extension of reduced rank regression; we show that this model provides a probabilistic interpretation of discriminative clustering methods with added benefits in terms of number of hyperparameters and optimization. While expectation-maximization (EM) algorithm is commonly used to learn these models, its optimization usually leads to local minimum because it relies on a non-convex cost function with many such local minima. To avoid this problem, we introduce a local approximation of this cost function, which leads to a quadratic non-convex optimization problem over a product of simplices. In order to minimize such functions, we propose an efficient algorithm based on convex relaxation and low-rank representation of our data, which allows to deal with large instances.