Plotting

 Awasthi, Pranjal


A Weighted K-Center Algorithm for Data Subset Selection

arXiv.org Artificial Intelligence

This makes us ponder the key factors behind this revolution: is it the availability of the large datasets, the actual learning algorithms, or both? ML models rely on very deep networks and enormous labeled datasets, requiring exorbitant computational and human labeling efforts. For example, the market for data annotation costs have crossed one billion US dollars in 2020, and it is estimated to hit seven billion in 2027. Human annotation of semantic segmentation labels takes about 45-60 minutes [BGC10] for a single image. In most vision and NLP applications, unlabeled data is unlimited and is usually available at no cost. To directly reduce the human annotation costs, this paper focuses on identifying smaller subsets of training data that can lead to accurate models with marginal or no loss in performance compared to the ones trained on the full dataset. Among the several approaches for subset selection, two are shown to achieve impressive results: (1) the classical margin sampling algorithm that selects points based on the uncertainty in the class prediction scores [RS06b], and (2) the k-center clustering algorithm [SS18] based on core sets. One may wonder about the natural extension of these two powerful algorithms: is there a principled method that jointly uses both these measures for computing more informative subsets?


Improving Length-Generalization in Transformers via Task Hinting

arXiv.org Machine Learning

It has been observed in recent years that transformers have problems with length generalization for certain types of reasoning and arithmetic tasks. In particular, the performance of a transformer model trained on tasks (say addition) up to a certain length (e.g., 5 digit numbers) drops sharply when applied to longer instances of the same problem. This work proposes an approach based on task hinting towards addressing length generalization. Our key idea is that while training the model on task-specific data, it is helpful to simultaneously train the model to solve a simpler but related auxiliary task as well. We study the classical sorting problem as a canonical example to evaluate our approach. We design a multitask training framework and show that task hinting significantly improve length generalization. For sorting we show that it is possible to train models on data consisting of sequences having length at most $20$, and improve the test accuracy on sequences of length $100$ from less than 1% (for standard training) to more than 92% (via task hinting). Our study uncovers several interesting aspects of length generalization. We observe that while several auxiliary tasks may seem natural a priori, their effectiveness in improving length generalization differs dramatically. We further use probing and visualization-based techniques to understand the internal mechanisms via which the model performs the task, and propose a theoretical construction consistent with the observed learning behaviors of the model. Based on our construction, we show that introducing a small number of length dependent parameters into the training procedure can further boost the performance on unseen lengths. Finally, we also show the efficacy of our task hinting based approach beyond sorting, giving hope that these techniques will be applicable in broader contexts.


The Sample Complexity of Multi-Distribution Learning for VC Classes

arXiv.org Artificial Intelligence

Multi-distribution learning is a natural generalization of PAC learning to settings with multiple data distributions. There remains a significant gap between the known upper and lower bounds for PAC-learnable classes. In particular, though we understand the sample complexity of learning a VC dimension d class on $k$ distributions to be $O(\epsilon^{-2} \ln(k)(d + k) + \min\{\epsilon^{-1} dk, \epsilon^{-4} \ln(k) d\})$, the best lower bound is $\Omega(\epsilon^{-2}(d + k \ln(k)))$. We discuss recent progress on this problem and some hurdles that are fundamental to the use of game dynamics in statistical learning.


Distributionally Robust Data Join

arXiv.org Artificial Intelligence

Suppose we are given two datasets: a labeled dataset and unlabeled dataset which also has additional auxiliary features not present in the first dataset. What is the most principled way to use these datasets together to construct a predictor? The answer should depend upon whether these datasets are generated by the same or different distributions over their mutual feature sets, and how similar the test distribution will be to either of those distributions. In many applications, the two datasets will likely follow different distributions, but both may be close to the test distribution. We introduce the problem of building a predictor which minimizes the maximum loss over all probability distributions over the original features, auxiliary features, and binary labels, whose Wasserstein distance is $r_1$ away from the empirical distribution over the labeled dataset and $r_2$ away from that of the unlabeled dataset. This can be thought of as a generalization of distributionally robust optimization (DRO), which allows for two data sources, one of which is unlabeled and may contain auxiliary features.


Best-Effort Adaptation

arXiv.org Artificial Intelligence

We study a problem of best-effort adaptation motivated by several applications and considerations, which consists of determining an accurate predictor for a target domain, for which a moderate amount of labeled samples are available, while leveraging information from another domain for which substantially more labeled samples are at one's disposal. We present a new and general discrepancy-based theoretical analysis of sample reweighting methods, including bounds holding uniformly over the weights. We show how these bounds can guide the design of learning algorithms that we discuss in detail. We further show that our learning guarantees and algorithms provide improved solutions for standard domain adaptation problems, for which few labeled data or none are available from the target domain. We finally report the results of a series of experiments demonstrating the effectiveness of our best-effort adaptation and domain adaptation algorithms, as well as comparisons with several baselines. We also discuss how our analysis can benefit the design of principled solutions for fine-tuning.


Congested Bandits: Optimal Routing via Short-term Resets

arXiv.org Artificial Intelligence

For traffic routing platforms, the choice of which route to recommend to a user depends on the congestion on these routes -- indeed, an individual's utility depends on the number of people using the recommended route at that instance. Motivated by this, we introduce the problem of Congested Bandits where each arm's reward is allowed to depend on the number of times it was played in the past $\Delta$ timesteps. This dependence on past history of actions leads to a dynamical system where an algorithm's present choices also affect its future pay-offs, and requires an algorithm to plan for this. We study the congestion aware formulation in the multi-armed bandit (MAB) setup and in the contextual bandit setup with linear rewards. For the multi-armed setup, we propose a UCB style algorithm and show that its policy regret scales as $\tilde{O}(\sqrt{K \Delta T})$. For the linear contextual bandit setup, our algorithm, based on an iterative least squares planner, achieves policy regret $\tilde{O}(\sqrt{dT} + \Delta)$. From an experimental standpoint, we corroborate the no-regret properties of our algorithms via a simulation study.


Do More Negative Samples Necessarily Hurt in Contrastive Learning?

arXiv.org Machine Learning

Recent investigations in noise contrastive estimation suggest, both empirically as well as theoretically, that while having more "negative samples" in the contrastive loss improves downstream classification performance initially, beyond a threshold, it hurts downstream performance due to a "collision-coverage" trade-off. But is such a phenomenon inherent in contrastive learning? We show in a simple theoretical setting, where positive pairs are generated by sampling from the underlying latent class (introduced by Saunshi et al. (ICML 2019)), that the downstream performance of the representation optimizing the (population) contrastive loss in fact does not degrade with the number of negative samples. Along the way, we give a structural characterization of the optimal representation in our framework, for noise contrastive estimation. We also provide empirical support for our theoretical results on CIFAR-10 and CIFAR-100 datasets.


$\mathscr{H}$-Consistency Estimation Error of Surrogate Loss Minimizers

arXiv.org Machine Learning

We present a detailed study of estimation errors in terms of surrogate loss estimation errors. We refer to such guarantees as $\mathscr{H}$-consistency estimation error bounds, since they account for the hypothesis set $\mathscr{H}$ adopted. These guarantees are significantly stronger than $\mathscr{H}$-calibration or $\mathscr{H}$-consistency. They are also more informative than similar excess error bounds derived in the literature, when $\mathscr{H}$ is the family of all measurable functions. We prove general theorems providing such guarantees, for both the distribution-dependent and distribution-independent settings. We show that our bounds are tight, modulo a convexity assumption. We also show that previous excess error bounds can be recovered as special cases of our general results. We then present a series of explicit bounds in the case of the zero-one loss, with multiple choices of the surrogate loss and for both the family of linear functions and neural networks with one hidden-layer. We further prove more favorable distribution-dependent guarantees in that case. We also present a series of explicit bounds in the case of the adversarial loss, with surrogate losses based on the supremum of the $\rho$-margin, hinge or sigmoid loss and for the same two general hypothesis sets. Here too, we prove several enhancements of these guarantees under natural distributional assumptions. Finally, we report the results of simulations illustrating our bounds and their tightness.


Agnostic Learnability of Halfspaces via Logistic Loss

arXiv.org Machine Learning

We investigate approximation guarantees provided by logistic regression for the fundamental problem of agnostic learning of homogeneous halfspaces. Previously, for a certain broad class of "well-behaved" distributions on the examples, Diakonikolas et al. (2020) proved an $\tilde{\Omega}(\textrm{OPT})$ lower bound, while Frei et al. (2021) proved an $\tilde{O}(\sqrt{\textrm{OPT}})$ upper bound, where $\textrm{OPT}$ denotes the best zero-one/misclassification risk of a homogeneous halfspace. In this paper, we close this gap by constructing a well-behaved distribution such that the global minimizer of the logistic risk over this distribution only achieves $\Omega(\sqrt{\textrm{OPT}})$ misclassification risk, matching the upper bound in (Frei et al., 2021). On the other hand, we also show that if we impose a radial-Lipschitzness condition in addition to well-behaved-ness on the distribution, logistic regression on a ball of bounded radius reaches $\tilde{O}(\textrm{OPT})$ misclassification risk. Our techniques also show for any well-behaved distribution, regardless of radial Lipschitzness, we can overcome the $\Omega(\sqrt{\textrm{OPT}})$ lower bound for logistic loss simply at the cost of one additional convex optimization step involving the hinge loss and attain $\tilde{O}(\textrm{OPT})$ misclassification risk. This two-step convex optimization algorithm is simpler than previous methods obtaining this guarantee, all of which require solving $O(\log(1/\textrm{OPT}))$ minimization problems.


On the Existence of the Adversarial Bayes Classifier (Extended Version)

arXiv.org Machine Learning

Adversarial robustness is a critical property in a variety of modern machine learning applications. While it has been the subject of several recent theoretical studies, many important questions related to adversarial robustness are still open. In this work, we study a fundamental question regarding Bayes optimality for adversarial robustness. We provide general sufficient conditions under which the existence of a Bayes optimal classifier can be guaranteed for adversarial robustness. Our results can provide a useful tool for a subsequent study of surrogate losses in adversarial robustness and their consistency properties. This manuscript is the extended version of the paper On the Existence of the Adversarial Bayes Classifier published in NeurIPS (Awasthi et al., 2021b). The results of the original paper did not apply to some non-strictly convex norms. Here we extend our results to all possible norms.