Avila, Sandra
FairPIVARA: Reducing and Assessing Biases in CLIP-Based Multimodal Models
Moreira, Diego A. B., Ferreira, Alef Iury, Silva, Jhessica, Santos, Gabriel Oliveira dos, Pereira, Luiz, Gondim, João Medrado, Bonil, Gustavo, Maia, Helena, da Silva, Nádia, Hashiguti, Simone Tiemi, Santos, Jefersson A. dos, Pedrini, Helio, Avila, Sandra
Despite significant advancements and pervasive use of vision-language models, a paucity of studies has addressed their ethical implications. These models typically require extensive training data, often from hastily reviewed text and image datasets, leading to highly imbalanced datasets and ethical concerns. Additionally, models initially trained in English are frequently fine-tuned for other languages, such as the CLIP model, which can be expanded with more data to enhance capabilities but can add new biases. The CAPIVARA, a CLIP-based model adapted to Portuguese, has shown strong performance in zero-shot tasks. In this paper, we evaluate four different types of discriminatory practices within visual-language models and introduce FairPIVARA, a method to reduce them by removing the most affected dimensions of feature embeddings. The application of FairPIVARA has led to a significant reduction of up to 98% in observed biases while promoting a more balanced word distribution within the model. Our model and code are available at: https://github.com/hiaac-nlp/FairPIVARA.
Gender Bias Detection in Court Decisions: A Brazilian Case Study
Benatti, Raysa, Severi, Fabiana, Avila, Sandra, Colombini, Esther Luna
Data derived from the realm of the social sciences is often produced in digital text form, which motivates its use as a source for natural language processing methods. Researchers and practitioners have developed and relied on artificial intelligence techniques to collect, process, and analyze documents in the legal field, especially for tasks such as text summarization and classification. While increasing procedural efficiency is often the primary motivation behind natural language processing in the field, several works have proposed solutions for human rights-related issues, such as assessment of public policy and institutional social settings. One such issue is the presence of gender biases in court decisions, which has been largely studied in social sciences fields; biased institutional responses to gender-based violence are a violation of international human rights dispositions since they prevent gender minorities from accessing rights and hamper their dignity. Natural language processing-based approaches can help detect these biases on a larger scale. Still, the development and use of such tools require researchers and practitioners to be mindful of legal and ethical aspects concerning data sharing and use, reproducibility, domain expertise, and value-charged choices. In this work, we (a) present an experimental framework developed to automatically detect gender biases in court decisions issued in Brazilian Portuguese and (b) describe and elaborate on features we identify to be critical in such a technology, given its proposed use as a support tool for research and assessment of court~activity.
Back to the Basics on Predicting Transfer Performance
Chaves, Levy, Valle, Eduardo, Bissoto, Alceu, Avila, Sandra
In the evolving landscape of deep learning, selecting the best pre-trained models from a growing number of choices is a challenge. Transferability scorers propose alleviating this scenario, but their recent proliferation, ironically, poses the challenge of their own assessment. In this work, we propose both robust benchmark guidelines for transferability scorers, and a well-founded technique to combine multiple scorers, which we show consistently improves their results. We extensively evaluate 13 scorers from literature across 11 datasets, comprising generalist, fine-grained, and medical imaging datasets. We show that few scorers match the predictive performance of the simple raw metric of models on ImageNet, and that all predictors suffer on medical datasets. Our results highlight the potential of combining different information sources for reliably predicting transferability across varied domains.
Leveraging Self-Supervised Learning for Scene Recognition in Child Sexual Abuse Imagery
Valois, Pedro H. V., Macedo, João, Ribeiro, Leo S. F., Santos, Jefersson A. dos, Avila, Sandra
Crime in the 21st century is split into a virtual and real world. However, the former has become a global menace to people's well-being and security in the latter. The challenges it presents must be faced with unified global cooperation, and we must rely more than ever on automated yet trustworthy tools to combat the ever-growing nature of online offenses. Over 10 million child sexual abuse reports are submitted to the US National Center for Missing & Exploited Children every year, and over 80% originated from online sources. Therefore, investigation centers and clearinghouses cannot manually process and correctly investigate all imagery. In light of that, reliable automated tools that can securely and efficiently deal with this data are paramount. In this sense, the scene recognition task looks for contextual cues in the environment, being able to group and classify child sexual abuse data without requiring to be trained on sensitive material. The scarcity and limitations of working with child sexual abuse images lead to self-supervised learning, a machine-learning methodology that leverages unlabeled data to produce powerful representations that can be more easily transferred to target tasks. This work shows that self-supervised deep learning models pre-trained on scene-centric data can reach 71.6% balanced accuracy on our indoor scene classification task and, on average, 2.2 percentage points better performance than a fully supervised version. We cooperate with Brazilian Federal Police experts to evaluate our indoor classification model on actual child abuse material. The results demonstrate a notable discrepancy between the features observed in widely used scene datasets and those depicted on sensitive materials.
Even Small Correlation and Diversity Shifts Pose Dataset-Bias Issues
Bissoto, Alceu, Barata, Catarina, Valle, Eduardo, Avila, Sandra
Distribution shifts are common in real-world datasets and can affect the performance and reliability of deep learning models. In this paper, we study two types of distribution shifts: diversity shifts, which occur when test samples exhibit patterns unseen during training, and correlation shifts, which occur when test data present a different correlation between seen invariant and spurious features. We propose an integrated protocol to analyze both types of shifts using datasets where they co-exist in a controllable manner. Finally, we apply our approach to a real-world classification problem of skin cancer analysis, using out-of-distribution datasets and specialized bias annotations. Our protocol reveals three findings: 1) Models learn and propagate correlation shifts even with low-bias training; this poses a risk of accumulating and combining unaccountable weak biases; 2) Models learn robust features in high- and low-bias scenarios but use spurious ones if test samples have them; this suggests that spurious correlations do not impair the learning of robust features; 3) Diversity shift can reduce the reliance on spurious correlations; this is counter intuitive since we expect biased models to depend more on biases when invariant features are missing. Our work has implications for distribution shift research and practice, providing new insights into how models learn and rely on spurious correlations under different types of shifts.
CAPIVARA: Cost-Efficient Approach for Improving Multilingual CLIP Performance on Low-Resource Languages
Santos, Gabriel Oliveira dos, Moreira, Diego A. B., Ferreira, Alef Iury, Silva, Jhessica, Pereira, Luiz, Bueno, Pedro, Sousa, Thiago, Maia, Helena, Da Silva, Nádia, Colombini, Esther, Pedrini, Helio, Avila, Sandra
This work introduces CAPIVARA, a cost-efficient framework designed to enhance the performance of multilingual CLIP models in low-resource languages. While CLIP has excelled in zero-shot vision-language tasks, the resource-intensive nature of model training remains challenging. Many datasets lack linguistic diversity, featuring solely English descriptions for images. CAPIVARA addresses this by augmenting text data using image captioning and machine translation to generate multiple synthetic captions in low-resource languages. We optimize the training pipeline with LiT, LoRA, and gradient checkpointing to alleviate the computational cost. Through extensive experiments, CAPIVARA emerges as state of the art in zero-shot tasks involving images and Portuguese texts. We show the potential for significant improvements in other low-resource languages, achieved by fine-tuning the pre-trained multilingual CLIP using CAPIVARA on a single GPU for 2 hours. Our model and code is available at https://github.com/hiaac-nlp/CAPIVARA.
The Performance of Transferability Metrics does not Translate to Medical Tasks
Chaves, Levy, Bissoto, Alceu, Valle, Eduardo, Avila, Sandra
Transfer learning boosts the performance of medical image analysis by enabling deep learning (DL) on small datasets through the knowledge acquired from large ones. As the number of DL architectures explodes, exhaustively attempting all candidates becomes unfeasible, motivating cheaper alternatives for choosing them. Transferability scoring methods emerge as an enticing solution, allowing to efficiently calculate a score that correlates with the architecture accuracy on any target dataset. However, since transferability scores have not been evaluated on medical datasets, their use in this context remains uncertain, preventing them from benefiting practitioners. We fill that gap in this work, thoroughly evaluating seven transferability scores in three medical applications, including out-of-distribution scenarios. Despite promising results in general-purpose datasets, our results show that no transferability score can reliably and consistently estimate target performance in medical contexts, inviting further work in that direction.
A Survey on Deep Learning for Skin Lesion Segmentation
Mirikharaji, Zahra, Abhishek, Kumar, Bissoto, Alceu, Barata, Catarina, Avila, Sandra, Valle, Eduardo, Celebi, M. Emre, Hamarneh, Ghassan
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online at https://github.com/sfu-mial/skin-lesion-segmentation-survey.