Goto

Collaborating Authors

 Atzeni, Mattia


Polar Ducks and Where to Find Them: Enhancing Entity Linking with Duck Typing and Polar Box Embeddings

arXiv.org Artificial Intelligence

Entity linking methods based on dense retrieval are an efficient and widely used solution in large-scale applications, but they fall short of the performance of generative models, as they are sensitive to the structure of the embedding space. In order to address this issue, this paper introduces DUCK, an approach to infusing structural information in the space of entity representations, using prior knowledge of entity types. Inspired by duck typing in programming languages, we propose to define the type of an entity based on the relations that it has with other entities in a knowledge graph. Then, porting the concept of box embeddings to spherical polar coordinates, we propose to represent relations as boxes on the hypersphere. We optimize the model to cluster entities of similar type by placing them inside the boxes corresponding to their relations. Our experiments show that our method sets new state-of-the-art results on standard entity-disambiguation benchmarks, it improves the performance of the model by up to 7.9 F1 points, outperforms other type-aware approaches, and matches the results of generative models with 18 times more parameters.


Infusing Lattice Symmetry Priors in Attention Mechanisms for Sample-Efficient Abstract Geometric Reasoning

arXiv.org Artificial Intelligence

The Abstraction and Reasoning Corpus (ARC) (Chollet, 2019) and its most recent language-complete instantiation (LARC) has been postulated as an important step towards general AI. Yet, even state-of-the-art machine learning models struggle to achieve meaningful performance on these problems, falling behind non-learning based approaches. We argue that solving these tasks requires extreme generalization that can only be achieved by proper accounting for core knowledge priors. As a step towards this goal, we focus on geometry priors and introduce LatFormer, a model that incorporates lattice symmetry priors in attention masks. We show that, for any transformation of the hypercubic lattice, there exists a binary attention mask that implements that group action. Hence, our study motivates a modification to the standard attention mechanism, where attention weights are scaled using soft masks generated by a convolutional network. Experiments on synthetic geometric reasoning show that LatFormer requires 2 orders of magnitude fewer data than standard attention and transformers. Moreover, our results on ARC and LARC tasks that incorporate geometric priors provide preliminary evidence that these complex datasets do not lie out of the reach of deep learning models.


SQALER: Scaling Question Answering by Decoupling Multi-Hop and Logical Reasoning

arXiv.org Artificial Intelligence

State-of-the-art approaches to reasoning and question answering over knowledge graphs (KGs) usually scale with the number of edges and can only be applied effectively on small instance-dependent subgraphs. In this paper, we address this issue by showing that multi-hop and more complex logical reasoning can be accomplished separately without losing expressive power. Motivated by this insight, we propose an approach to multi-hop reasoning that scales linearly with the number of relation types in the graph, which is usually significantly smaller than the number of edges or nodes. This produces a set of candidate solutions that can be provably refined to recover the solution to the original problem. Our experiments on knowledge-based question answering show that our approach solves the multi-hop MetaQA dataset, achieves a new state-of-the-art on the more challenging WebQuestionsSP, is orders of magnitude more scalable than competitive approaches, and can achieve compositional generalization out of the training distribution.


Business Entity Matching with Siamese Graph Convolutional Networks

arXiv.org Artificial Intelligence

We propose a model architecture Although knowledge graphs (KGs) and ontologies have that combines the advantages of graph convolutional networks been exploited successfully for data integration [Trivedi (GCNs) [Kipf and Welling 2017] and siamese networks et al. 2018; Azmy et al. 2019], entity matching involving [Bromley et al. 1993] to address the entity-matching structured and unstructured sources has usually been task. GCNs are a type of graph neural network that shares performed by treating records without explicitly taking filter parameters among all the nodes, regardless of their location into account the natural graph representation of structured in the graph. Our Siamese Graph Convolutional Network sources and the potential graph representation of unstructured (S-GCN) incorporates two identical GCNs, as shown data [Mudgal et al. 2018; Gschwind et al. 2019].


Text-based RL Agents with Commonsense Knowledge: New Challenges, Environments and Baselines

arXiv.org Artificial Intelligence

Text-based games have emerged as an important test-bed for Reinforcement Learning (RL) research, requiring RL agents to combine grounded language understanding with sequential decision making. In this paper, we examine the problem of infusing RL agents with commonsense knowledge. Such knowledge would allow agents to efficiently act in the world by pruning out implausible actions, and to perform look-ahead planning to determine how current actions might affect future world states. We design a new text-based gaming environment called TextWorld Commonsense (TWC) for training and evaluating RL agents with a specific kind of commonsense knowledge about objects, their attributes, and affordances. We also introduce several baseline RL agents which track the sequential context and dynamically retrieve the relevant commonsense knowledge from ConceptNet. We show that agents which incorporate commonsense knowledge in TWC perform better, while acting more efficiently. We conduct user-studies to estimate human performance on TWC and show that there is ample room for future improvement.


Enhancing Text-based Reinforcement Learning Agents with Commonsense Knowledge

arXiv.org Artificial Intelligence

In this paper, we consider the recent trend of evaluating progress on reinforcement learning technology by using text-based environments and games as evaluation environments. This reliance on text brings advances in natural language processing into the ambit of these agents, with a recurring thread being the use of external knowledge to mimic and better human-level performance. We present one such instantiation of agents that use commonsense knowledge from ConceptNet to show promising performance on two text-based environments.