Goto

Collaborating Authors

 Asenov, Martin


Lightweight Online Adaption for Time Series Foundation Model Forecasts

arXiv.org Machine Learning

Foundation models (FMs) have emerged as a promising approach for time series forecasting. While effective, FMs typically remain fixed during deployment due to the high computational costs of learning them online. Consequently, deployed FMs fail to adapt their forecasts to current data characteristics, despite the availability of online feedback from newly arriving data. This raises the question of whether FM performance can be enhanced by the efficient usage of this feedback. We propose AdapTS to answer this question. AdapTS is a lightweight mechanism for the online adaption of FM forecasts in response to online feedback. AdapTS consists of two parts: a) the AdapTS-Forecaster which is used to learn the current data distribution; and b) the AdapTS-Weighter which is used to combine the forecasts of the FM and the AdapTS-Forecaster. We evaluate the performance of AdapTS in conjunction with several recent FMs across a suite of standard time series datasets. In all of our experiments we find that using AdapTS improves performance. This work demonstrates how efficient usage of online feedback can be used to improve FM forecasts.


Performance of Zero-Shot Time Series Foundation Models on Cloud Data

arXiv.org Artificial Intelligence

Time series foundation models (FMs) have emerged as a popular paradigm for zero-shot multi-domain forecasting. FMs are trained on numerous diverse datasets and claim to be effective forecasters across multiple different time series domains, including cloud data. In this work we investigate this claim, exploring the effectiveness of FMs on cloud data. We demonstrate that many well-known FMs fail to generate meaningful or accurate zero-shot forecasts in this setting. We support this claim empirically, showing that FMs are outperformed consistently by simple linear baselines. We also illustrate a number of interesting pathologies, including instances where FMs suddenly output seemingly erratic, random-looking forecasts. Our results suggest a widespread failure of FMs to model cloud data.


Achieving Dexterous Bidirectional Interaction in Uncertain Conditions for Medical Robotics

arXiv.org Artificial Intelligence

Medical robotics can help improve and extend the reach of healthcare services. A major challenge for medical robots is the complex physical interaction between the robot and the patients which is required to be safe. This work presents the preliminary evaluation of a recently introduced control architecture based on the Fractal Impedance Control (FIC) in medical applications. The deployed FIC architecture is robust to delay between the master and the replica robots. It can switch online between an admittance and impedance behaviour, and it is robust to interaction with unstructured environments. Our experiments analyse three scenarios: teleoperated surgery, rehabilitation, and remote ultrasound scan. The experiments did not require any adjustment of the robot tuning, which is essential in medical applications where the operators do not have an engineering background required to tune the controller. Our results show that is possible to teleoperate the robot to cut using a scalpel, do an ultrasound scan, and perform remote occupational therapy. However, our experiments also highlighted the need for a better robots embodiment to precisely control the system in 3D dynamic tasks.


How Does It Function? Characterizing Long-term Trends in Production Serverless Workloads

arXiv.org Artificial Intelligence

This paper releases and analyzes two new Huawei cloud serverless traces. The traces span a period of over 7 months with over 1.4 trillion function invocations combined. The first trace is derived from Huawei's internal workloads and contains detailed per-second statistics for 200 functions running across multiple Huawei cloud data centers. The second trace is a representative workload from Huawei's public FaaS platform. This trace contains per-minute arrival rates for over 5000 functions running in a single Huawei data center. We present the internals of a production FaaS platform by characterizing resource consumption, cold-start times, programming languages used, periodicity, per-second versus per-minute burstiness, correlations, and popularity. Our findings show that there is considerable diversity in how serverless functions behave: requests vary by up to 9 orders of magnitude across functions, with some functions executed over 1 billion times per day; scheduling time, execution time and cold-start distributions vary across 2 to 4 orders of magnitude and have very long tails; and function invocation counts demonstrate strong periodicity for many individual functions and on an aggregate level. Our analysis also highlights the need for further research in estimating resource reservations and time-series prediction to account for the huge diversity in how serverless functions behave. Datasets and code available at https://github.com/sir-lab/data-release


Vision-based system identification and 3D keypoint discovery using dynamics constraints

arXiv.org Machine Learning

This paper introduces V-SysId, a novel method that enables simultaneous keypoint discovery, 3D system identification, and extrinsic camera calibration from an unlabeled video taken from a static camera, using only the family of equations of motion of the object of interest as weak supervision. V-SysId takes keypoint trajectory proposals and alternates between maximum likelihood parameter estimation and extrinsic camera calibration, before applying a suitable selection criterion to identify the track of interest. This is then used to train a keypoint tracking model using supervised learning. Results on a range of settings (robotics, physics, physiology) highlight the utility of this approach.