Goto

Collaborating Authors

 Arunachaleswaran, Eshwar Ram


Swap Regret and Correlated Equilibria Beyond Normal-Form Games

arXiv.org Artificial Intelligence

Swap regret is a notion that has proven itself to be central to the study of general-sum normal-form games, with swap-regret minimization leading to convergence to the set of correlated equilibria and guaranteeing non-manipulability against a self-interested opponent. However, the situation for more general classes of games -- such as Bayesian games and extensive-form games -- is less clear-cut, with multiple candidate definitions for swap-regret but no known efficiently minimizable variant of swap regret that implies analogous non-manipulability guarantees. In this paper, we present a new variant of swap regret for polytope games that we call ``profile swap regret'', with the property that obtaining sublinear profile swap regret is both necessary and sufficient for any learning algorithm to be non-manipulable by an opponent (resolving an open problem of Mansour et al., 2022). Although we show profile swap regret is NP-hard to compute given a transcript of play, we show it is nonetheless possible to design efficient learning algorithms that guarantee at most $O(\sqrt{T})$ profile swap regret. Finally, we explore the correlated equilibrium notion induced by low-profile-swap-regret play, and demonstrate a gap between the set of outcomes that can be implemented by this learning process and the set of outcomes that can be implemented by a third-party mediator (in contrast to the situation in normal-form games).


Learning to Play Against Unknown Opponents

arXiv.org Artificial Intelligence

We consider the problem of a learning agent who has to repeatedly play a general sum game against a strategic opponent who acts to maximize their own payoff by optimally responding against the learner's algorithm. The learning agent knows their own payoff function, but is uncertain about the payoff of their opponent (knowing only that it is drawn from some distribution $\mathcal{D}$). What learning algorithm should the agent run in order to maximize their own total utility? We demonstrate how to construct an $\varepsilon$-optimal learning algorithm (obtaining average utility within $\varepsilon$ of the optimal utility) for this problem in time polynomial in the size of the input and $1/\varepsilon$ when either the size of the game or the support of $\mathcal{D}$ is constant. When the learning algorithm is further constrained to be a no-regret algorithm, we demonstrate how to efficiently construct an optimal learning algorithm (asymptotically achieving the optimal utility) in polynomial time, independent of any other assumptions. Both results make use of recently developed machinery that converts the analysis of learning algorithms to the study of the class of corresponding geometric objects known as menus.


An Elementary Predictor Obtaining $2\sqrt{T}$ Distance to Calibration

arXiv.org Machine Learning

Probabilistic predictions of binary outcomes are said to be calibrated, if, informally, they are unbiased conditional on their own predictions. For predictors that are not perfectly calibrated, there are a variety of ways to measure calibration error. Perhaps the most popular measure is Expected Calibration Error (ECE), which measures the average bias of the predictions, weighted by the frequency of the predictions. ECE has a number of difficulties as a measure of calibration, not least of which is that it is discontinuous in the predictions. Motivated by this, B lasiok et al. [2023] propose a different measure: distance to calibration, which measures how far a predictor is in l


Oracle Efficient Algorithms for Groupwise Regret

arXiv.org Artificial Intelligence

We study the problem of online prediction, in which at each time step $t$, an individual $x_t$ arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.