Arora, Siddhant
ESPnet-SDS: Unified Toolkit and Demo for Spoken Dialogue Systems
Arora, Siddhant, Peng, Yifan, Shi, Jiatong, Tian, Jinchuan, Chen, William, Bharadwaj, Shikhar, Futami, Hayato, Kashiwagi, Yosuke, Tsunoo, Emiru, Shimizu, Shuichiro, Srivastav, Vaibhav, Watanabe, Shinji
Advancements in audio foundation models (FMs) have fueled interest in end-to-end (E2E) spoken dialogue systems, but different web interfaces for each system makes it challenging to compare and contrast them effectively. Motivated by this, we introduce an open-source, user-friendly toolkit designed to build unified web interfaces for various cascaded and E2E spoken dialogue systems. Our demo further provides users with the option to get on-the-fly automated evaluation metrics such as (1) latency, (2) ability to understand user input, (3) coherence, diversity, and relevance of system response, and (4) intelligibility and audio quality of system output. Using the evaluation metrics, we compare various cascaded and E2E spoken dialogue systems with a human-human conversation dataset as a proxy. Our analysis demonstrates that the toolkit allows researchers to effortlessly compare and contrast different technologies, providing valuable insights such as current E2E systems having poorer audio quality and less diverse responses. An example demo produced using our toolkit is publicly available here: https://huggingface.co/spaces/Siddhant/Voice_Assistant_Demo.
Talking Turns: Benchmarking Audio Foundation Models on Turn-Taking Dynamics
Arora, Siddhant, Lu, Zhiyun, Chiu, Chung-Cheng, Pang, Ruoming, Watanabe, Shinji
The recent wave of audio foundation models (FMs) could provide new capabilities for conversational modeling. However, there have been limited efforts to evaluate these audio FMs comprehensively on their ability to have natural and interactive conversations. To engage in meaningful conversation with the end user, we would want the FMs to additionally perform a fluent succession of turns without too much overlapping speech or long stretches of silence. Inspired by this, we ask whether the recently proposed audio FMs can understand, predict, and perform turn-taking events? To answer this, we propose a novel evaluation protocol that can assess spoken dialog system's turn-taking capabilities using a supervised model as a judge that has been trained to predict turn-taking events in human-human conversations. Using this protocol, we present the first comprehensive user study that evaluates existing spoken dialogue systems on their ability to perform turn-taking events and reveal many interesting insights, such as they sometimes do not understand when to speak up, can interrupt too aggressively and rarely backchannel. We further evaluate multiple open-source and proprietary audio FMs accessible through APIs on carefully curated test benchmarks from Switchboard to measure their ability to understand and predict turn-taking events and identify significant room for improvement. We will open source our evaluation platform to promote the development of advanced conversational AI systems.
ESPnet-SpeechLM: An Open Speech Language Model Toolkit
Tian, Jinchuan, Shi, Jiatong, Chen, William, Arora, Siddhant, Masuyama, Yoshiki, Maekaku, Takashi, Wu, Yihan, Peng, Junyi, Bharadwaj, Shikhar, Zhao, Yiwen, Cornell, Samuele, Peng, Yifan, Yue, Xiang, Yang, Chao-Han Huck, Neubig, Graham, Watanabe, Shinji
We present ESPnet-SpeechLM, an open toolkit designed to democratize the development of speech language models (SpeechLMs) and voice-driven agentic applications. The toolkit standardizes speech processing tasks by framing them as universal sequential modeling problems, encompassing a cohesive workflow of data preprocessing, pre-training, inference, and task evaluation. With ESPnet-SpeechLM, users can easily define task templates and configure key settings, enabling seamless and streamlined SpeechLM development. The toolkit ensures flexibility, efficiency, and scalability by offering highly configurable modules for every stage of the workflow. To illustrate its capabilities, we provide multiple use cases demonstrating how competitive SpeechLMs can be constructed with ESPnet-SpeechLM, including a 1.7B-parameter model pre-trained on both text and speech tasks, across diverse benchmarks. The toolkit and its recipes are fully transparent and reproducible at: https://github.com/espnet/espnet/tree/speechlm.
Dynamic-SUPERB Phase-2: A Collaboratively Expanding Benchmark for Measuring the Capabilities of Spoken Language Models with 180 Tasks
Huang, Chien-yu, Chen, Wei-Chih, Yang, Shu-wen, Liu, Andy T., Li, Chen-An, Lin, Yu-Xiang, Tseng, Wei-Cheng, Diwan, Anuj, Shih, Yi-Jen, Shi, Jiatong, Chen, William, Chen, Xuanjun, Hsiao, Chi-Yuan, Peng, Puyuan, Wang, Shih-Heng, Kuan, Chun-Yi, Lu, Ke-Han, Chang, Kai-Wei, Yang, Chih-Kai, Ritter-Gutierrez, Fabian, Chuang, Ming To, Huang, Kuan-Po, Arora, Siddhant, Lin, You-Kuan, Yeo, Eunjung, Chang, Kalvin, Chien, Chung-Ming, Choi, Kwanghee, Hsieh, Cheng-Hsiu, Lin, Yi-Cheng, Yu, Chee-En, Chiu, I-Hsiang, Guimarães, Heitor R., Han, Jionghao, Lin, Tzu-Quan, Lin, Tzu-Yuan, Chang, Homu, Chang, Ting-Wu, Chen, Chun Wei, Chen, Shou-Jen, Chen, Yu-Hua, Cheng, Hsi-Chun, Dhawan, Kunal, Fang, Jia-Lin, Fang, Shi-Xin, Chiang, Kuan-Yu Fang, Fu, Chi An, Hsiao, Hsien-Fu, Hsu, Ching Yu, Huang, Shao-Syuan, Wei, Lee Chen, Lin, Hsi-Che, Lin, Hsuan-Hao, Lin, Hsuan-Ting, Lin, Jian-Ren, Liu, Ting-Chun, Lu, Li-Chun, Pai, Tsung-Min, Pasad, Ankita, Kuan, Shih-Yun Shan, Shon, Suwon, Tang, Yuxun, Tsai, Yun-Shao, Wei, Jui-Chiang, Wei, Tzu-Chieh, Wu, Chengxi, Wu, Dien-Ruei, Yang, Chao-Han Huck, Yang, Chieh-Chi, Yip, Jia Qi, Yuan, Shao-Xiang, Noroozi, Vahid, Chen, Zhehuai, Wu, Haibin, Livescu, Karen, Harwath, David, Watanabe, Shinji, Lee, Hung-yi
Multimodal foundation models, such as Gemini and ChatGPT, have revolutionized human-machine interactions by seamlessly integrating various forms of data. Developing a universal spoken language model that comprehends a wide range of natural language instructions is critical for bridging communication gaps and facilitating more intuitive interactions. However, the absence of a comprehensive evaluation benchmark poses a significant challenge. We present Dynamic-SUPERB Phase-2, an open and evolving benchmark for the comprehensive evaluation of instruction-based universal speech models. Building upon the first generation, this second version incorporates 125 new tasks contributed collaboratively by the global research community, expanding the benchmark to a total of 180 tasks, making it the largest benchmark for speech and audio evaluation. While the first generation of Dynamic-SUPERB was limited to classification tasks, Dynamic-SUPERB Phase-2 broadens its evaluation capabilities by introducing a wide array of novel and diverse tasks, including regression and sequence generation, across speech, music, and environmental audio. Evaluation results indicate that none of the models performed well universally. SALMONN-13B excelled in English ASR, while WavLLM demonstrated high accuracy in emotion recognition, but current models still require further innovations to handle a broader range of tasks. We will soon open-source all task data and the evaluation pipeline.
Hypothesis Clustering and Merging: Novel MultiTalker Speech Recognition with Speaker Tokens
Kashiwagi, Yosuke, Futami, Hayato, Tsunoo, Emiru, Arora, Siddhant, Watanabe, Shinji
In many real-world scenarios, such as meetings, multiple speakers are present with an unknown number of participants, and their utterances often overlap. We address these multi-speaker challenges by a novel attention-based encoder-decoder method augmented with special speaker class tokens obtained by speaker clustering. During inference, we select multiple recognition hypotheses conditioned on predicted speaker cluster tokens, and these hypotheses are merged by agglomerative hierarchical clustering (AHC) based on the normalized edit distance. The clustered hypotheses result in the multi-speaker transcriptions with the appropriate number of speakers determined by AHC. Our experiments on the LibriMix dataset demonstrate that our proposed method was particularly effective in complex 3-mix environments, achieving a 55% relative error reduction on clean data and a 36% relative error reduction on noisy data compared with conventional serialized output training.
Rapid Language Adaptation for Multilingual E2E Speech Recognition Using Encoder Prompting
Kashiwagi, Yosuke, Futami, Hayato, Tsunoo, Emiru, Arora, Siddhant, Watanabe, Shinji
End-to-end multilingual speech recognition models handle multiple languages through a single model, often incorporating language identification to automatically detect the language of incoming speech. Since the common scenario is where the language is already known, these models can perform as language-specific by using language information as prompts, which is particularly beneficial for attention-based encoder-decoder architectures. However, the Connectionist Temporal Classification (CTC) approach, which enhances recognition via joint decoding and multi-task training, does not normally incorporate language prompts due to its conditionally independent output tokens. To overcome this, we introduce an encoder prompting technique within the self-conditioned CTC framework, enabling language-specific adaptation of the CTC model in a zero-shot manner. Our method has shown to significantly reduce errors by 28% on average and by 41% on low-resource languages.
On the Evaluation of Speech Foundation Models for Spoken Language Understanding
Arora, Siddhant, Pasad, Ankita, Chien, Chung-Ming, Han, Jionghao, Sharma, Roshan, Jung, Jee-weon, Dhamyal, Hira, Chen, William, Shon, Suwon, Lee, Hung-yi, Livescu, Karen, Watanabe, Shinji
The Spoken Language Understanding Evaluation (SLUE) suite of benchmark tasks was recently introduced to address the need for open resources and benchmarking of complex spoken language understanding (SLU) tasks, including both classification and sequence generation tasks, on natural speech. The benchmark has demonstrated preliminary success in using pre-trained speech foundation models (SFM) for these SLU tasks. However, the community still lacks a fine-grained understanding of the comparative utility of different SFMs. Inspired by this, we ask: which SFMs offer the most benefits for these complex SLU tasks, and what is the most effective approach for incorporating these SFMs? To answer this, we perform an extensive evaluation of multiple supervised and self-supervised SFMs using several evaluation protocols: (i) frozen SFMs with a lightweight prediction head, (ii) frozen SFMs with a complex prediction head, and (iii) fine-tuned SFMs with a lightweight prediction head. Although the supervised SFMs are pre-trained on much more speech recognition data (with labels), they do not always outperform self-supervised SFMs; the latter tend to perform at least as well as, and sometimes better than, supervised SFMs, especially on the sequence generation tasks in SLUE. While there is no universally optimal way of incorporating SFMs, the complex prediction head gives the best performance for most tasks, although it increases the inference time. We also introduce an open-source toolkit and performance leaderboard, SLUE-PERB, for these tasks and modeling strategies.
TMT: Tri-Modal Translation between Speech, Image, and Text by Processing Different Modalities as Different Languages
Kim, Minsu, Jung, Jee-weon, Rha, Hyeongseop, Maiti, Soumi, Arora, Siddhant, Chang, Xuankai, Watanabe, Shinji, Ro, Yong Man
The capability to jointly process multi-modal information is becoming an essential task. However, the limited number of paired multi-modal data and the large computational requirements in multi-modal learning hinder the development. We propose a novel Tri-Modal Translation (TMT) model that translates between arbitrary modalities spanning speech, image, and text. We introduce a novel viewpoint, where we interpret different modalities as different languages, and treat multi-modal translation as a well-established machine translation problem. To this end, we tokenize speech and image data into discrete tokens, which provide a unified interface across modalities and significantly decrease the computational cost. In the proposed TMT, a multi-modal encoder-decoder conducts the core translation, whereas modality-specific processing is conducted only within the tokenization and detokenization stages. We evaluate the proposed TMT on all six modality translation tasks. TMT outperforms single model counterparts consistently, demonstrating that unifying tasks is beneficial not only for practicality but also for performance.
OWSM v3.1: Better and Faster Open Whisper-Style Speech Models based on E-Branchformer
Peng, Yifan, Tian, Jinchuan, Chen, William, Arora, Siddhant, Yan, Brian, Sudo, Yui, Shakeel, Muhammad, Choi, Kwanghee, Shi, Jiatong, Chang, Xuankai, Jung, Jee-weon, Watanabe, Shinji
Recent studies have advocated for fully open foundation models to promote transparency and open science. As an initial step, the Open Whisper-style Speech Model (OWSM) reproduced OpenAI's Whisper using publicly available data and open-source toolkits. With the aim of reproducing Whisper, the previous OWSM v1 through v3 models were still based on Transformer, which might lead to inferior performance compared to other state-of-the-art speech encoders. In this work, we aim to improve the performance and efficiency of OWSM without extra training data. We present E-Branchformer based OWSM v3.1 models at two scales, i.e., 100M and 1B. The 1B model is the largest E-Branchformer based speech model that has been made publicly available. It outperforms the previous OWSM v3 in a vast majority of evaluation benchmarks, while demonstrating up to 25% faster inference speed. We publicly release the data preparation scripts, pre-trained models and training logs.
Phoneme-aware Encoding for Prefix-tree-based Contextual ASR
Futami, Hayato, Tsunoo, Emiru, Kashiwagi, Yosuke, Ogawa, Hiroaki, Arora, Siddhant, Watanabe, Shinji
In speech recognition applications, it is important to recognize context-specific rare words, such as proper nouns. Tree-constrained Pointer Generator (TCPGen) has shown promise for this purpose, which efficiently biases such words with a prefix tree. While the original TCPGen relies on grapheme-based encoding, we propose extending it with phoneme-aware encoding to better recognize words of unusual pronunciations. As TCPGen handles biasing words as subword units, we propose obtaining subword-level phoneme-aware encoding by using alignment between phonemes and subwords. Furthermore, we propose injecting phoneme-level predictions from CTC into queries of TCPGen so that the model better interprets the phoneme-aware encodings. We conducted ASR experiments with TCPGen for RNN transducer. We observed that proposed phoneme-aware encoding outperformed ordinary grapheme-based encoding on both the English LibriSpeech and Japanese CSJ datasets, demonstrating the robustness of our approach across linguistically diverse languages.