Arik, Sercan
Learned Feature Importance Scores for Automated Feature Engineering
Dong, Yihe, Arik, Sercan, Yoder, Nathanael, Pfister, Tomas
Feature engineering has demonstrated substantial utility for many machine learning workflows, such as in the small data regime or when distribution shifts are severe. Thus automating this capability can relieve much manual effort and improve model performance. Towards this, we propose AutoMAN, or Automated Mask-based Feature Engineering, an automated feature engineering framework that achieves high accuracy, low latency, and can be extended to heterogeneous and time-varying data. AutoMAN is based on effectively exploring the candidate transforms space, without explicitly manifesting transformed features. This is achieved by learning feature importance masks, which can be extended to support other modalities such as time series. AutoMAN learns feature transform importance end-to-end, incorporating a dataset's task target directly into feature engineering, resulting in state-of-the-art performance with significantly lower latency compared to alternatives.
ASPEST: Bridging the Gap Between Active Learning and Selective Prediction
Chen, Jiefeng, Yoon, Jinsung, Ebrahimi, Sayna, Arik, Sercan, Jha, Somesh, Pfister, Tomas
Selective prediction aims to learn a reliable model that abstains from making predictions when the model uncertainty is high. These predictions can then be deferred to a human expert for further evaluation. In many real-world scenarios, the distribution of test data is different from the training data. This results in more inaccurate predictions, necessitating increased human labeling, which can be difficult and expensive. Active learning circumvents this by only querying the most informative examples and, in several cases, has been shown to lower the overall labeling effort. In this work, we bridge selective prediction and active learning, proposing a new learning paradigm called active selective prediction which learns to query more informative samples from the shifted target domain while increasing accuracy and coverage. For this new problem, we propose a simple but effective solution, ASPEST, that utilizes ensembles of model snapshots with self-training with their aggregated outputs as pseudo labels. Extensive experiments on numerous image, text and structured datasets, particularly those suffer from domain shifts, demonstrate that our proposed method can significantly outperform prior work on selective prediction and active learning (e.g. on the MNIST$\to$SVHN benchmark with the labeling budget of $100$, ASPEST improves the AUC metric from $79.36\%$ to $88.84\%$) and achieves more optimal utilization of humans in the loop.
Data-Efficient and Interpretable Tabular Anomaly Detection
Chang, Chun-Hao, Yoon, Jinsung, Arik, Sercan, Udell, Madeleine, Pfister, Tomas
Anomaly detection (AD) plays an important role in numerous applications. We focus on two understudied aspects of AD that are critical for integration into real-world applications. First, most AD methods cannot incorporate labeled data that are often available in practice in small quantities and can be crucial to achieve high AD accuracy. Second, most AD methods are not interpretable, a bottleneck that prevents stakeholders from understanding the reason behind the anomalies. In this paper, we propose a novel AD framework that adapts a white-box model class, Generalized Additive Models, to detect anomalies using a partial identification objective which naturally handles noisy or heterogeneous features. In addition, the proposed framework, DIAD, can incorporate a small amount of labeled data to further boost anomaly detection performances in semi-supervised settings. We demonstrate the superiority of our framework compared to previous work in both unsupervised and semi-supervised settings using diverse tabular datasets. For example, under 5 labeled anomalies DIAD improves from 86.2\% to 89.4\% AUC by learning AD from unlabeled data. We also present insightful interpretations that explain why DIAD deems certain samples as anomalies.
Deep Voice 2: Multi-Speaker Neural Text-to-Speech
Gibiansky, Andrew, Arik, Sercan, Diamos, Gregory, Miller, John, Peng, Kainan, Ping, Wei, Raiman, Jonathan, Zhou, Yanqi
We introduce a technique for augmenting neural text-to-speech (TTS) with low-dimensional trainable speaker embeddings to generate different voices from a single model. As a starting point, we show improvements over the two state-of-the-art approaches for single-speaker neural TTS: Deep Voice 1 and Tacotron. We introduce Deep Voice 2, which is based on a similar pipeline with Deep Voice 1, but constructed with higher performance building blocks and demonstrates a significant audio quality improvement over Deep Voice 1. We improve Tacotron by introducing a post-processing neural vocoder, and demonstrate a significant audio quality improvement. We then demonstrate our technique for multi-speaker speech synthesis for both Deep Voice 2 and Tacotron on two multi-speaker TTS datasets.
Neural Voice Cloning with a Few Samples
Arik, Sercan, Chen, Jitong, Peng, Kainan, Ping, Wei, Zhou, Yanqi
Voice cloning is a highly desired feature for personalized speech interfaces. We introduce a neural voice cloning system that learns to synthesize a person's voice from only a few audio samples. We study two approaches: speaker adaptation and speaker encoding. Speaker adaptation is based on fine-tuning a multi-speaker generative model. Speaker encoding is based on training a separate model to directly infer a new speaker embedding, which will be applied to a multi-speaker generative model. In terms of naturalness of the speech and similarity to the original speaker, both approaches can achieve good performance, even with a few cloning audios. While speaker adaptation can achieve slightly better naturalness and similarity, cloning time and required memory for the speaker encoding approach are significantly less, making it more favorable for low-resource deployment.
Neural Voice Cloning with a Few Samples
Arik, Sercan, Chen, Jitong, Peng, Kainan, Ping, Wei, Zhou, Yanqi
Voice cloning is a highly desired feature for personalized speech interfaces. We introduce a neural voice cloning system that learns to synthesize a person's voice from only a few audio samples. We study two approaches: speaker adaptation and speaker encoding. Speaker adaptation is based on fine-tuning a multi-speaker generative model. Speaker encoding is based on training a separate model to directly infer a new speaker embedding, which will be applied to a multi-speaker generative model. In terms of naturalness of the speech and similarity to the original speaker, both approaches can achieve good performance, even with a few cloning audios. While speaker adaptation can achieve slightly better naturalness and similarity, cloning time and required memory for the speaker encoding approach are significantly less, making it more favorable for low-resource deployment.
Deep Voice 2: Multi-Speaker Neural Text-to-Speech
Gibiansky, Andrew, Arik, Sercan, Diamos, Gregory, Miller, John, Peng, Kainan, Ping, Wei, Raiman, Jonathan, Zhou, Yanqi
We introduce a technique for augmenting neural text-to-speech (TTS) with low-dimensional trainable speaker embeddings to generate different voices from a single model. As a starting point, we show improvements over the two state-of-the-art approaches for single-speaker neural TTS: Deep Voice 1 and Tacotron. We introduce Deep Voice 2, which is based on a similar pipeline with Deep Voice 1, but constructed with higher performance building blocks and demonstrates a significant audio quality improvement over Deep Voice 1. We improve Tacotron by introducing a post-processing neural vocoder, and demonstrate a significant audio quality improvement. We then demonstrate our technique for multi-speaker speech synthesis for both Deep Voice 2 and Tacotron on two multi-speaker TTS datasets. We show that a single neural TTS system can learn hundreds of unique voices from less than half an hour of data per speaker, while achieving high audio quality synthesis and preserving the speaker identities almost perfectly.