Anwar, Ammar
In-Context Ensemble Learning from Pseudo Labels Improves Video-Language Models for Low-Level Workflow Understanding
Xu, Moucheng, Chatzaroulas, Evangelos, McCutcheon, Luc, Ahad, Abdul, Azeem, Hamzah, Marecki, Janusz, Anwar, Ammar
A Standard Operating Procedure (SOP) defines a low-level, step-by-step written guide for a business software workflow. SOP generation is a crucial step towards automating end-to-end software workflows. Manually creating SOPs can be time-consuming. Recent advancements in large video-language models offer the potential for automating SOP generation by analyzing recordings of human demonstrations. However, current large video-language models face challenges with zero-shot SOP generation. In this work, we first explore in-context learning with video-language models for SOP generation. We then propose an exploration-focused strategy called In-Context Ensemble Learning, to aggregate pseudo labels of multiple possible paths of SOPs. The proposed in-context ensemble learning as well enables the models to learn beyond its context window limit with an implicit consistency regularisation. We report that in-context learning helps video-language models to generate more temporally accurate SOP, and the proposed in-context ensemble learning can consistently enhance the capabilities of the video-language models in SOP generation.
Training a Vision Language Model as Smartphone Assistant
Dorka, Nicolai, Marecki, Janusz, Anwar, Ammar
Addressing the challenge of a digital assistant capable of executing a wide array of user tasks, our research focuses on the realm of instruction-based mobile device control. We leverage recent advancements in large language models (LLMs) and present a visual language model (VLM) that can fulfill diverse tasks on mobile devices. It uses the visual input from the device screen and mimics human-like interactions, encompassing gestures such as tapping and swiping. This generality in the input and output space allows our agent to interact with any application on the device. Unlike previous methods, our model operates not only on a single screen image but on vision-language sentences created from sequences of past screenshots along with corresponding actions. Evaluating our method on the challenging Android in the Wild benchmark demonstrates its promising efficacy and potential. As mobile devices continue to evolve, there is an increasing demand for intuitive and efficient methods of interaction. Traditionally, users operate their devices through a series of taps and gestures on the screen.