Goto

Collaborating Authors

 Anshelevich, Elliot


Optimizing Multiple Simultaneous Objectives for Voting and Facility Location

arXiv.org Artificial Intelligence

We study the classic facility location setting, where we are given $n$ clients and $m$ possible facility locations in some arbitrary metric space, and want to choose a location to build a facility. The exact same setting also arises in spatial social choice, where voters are the clients and the goal is to choose a candidate or outcome, with the distance from a voter to an outcome representing the cost of this outcome for the voter (e.g., based on their ideological differences). Unlike most previous work, we do not focus on a single objective to optimize (e.g., the total distance from clients to the facility, or the maximum distance, etc.), but instead attempt to optimize several different objectives simultaneously. More specifically, we consider the $l$-centrum family of objectives, which includes the total distance, max distance, and many others. We present tight bounds on how well any pair of such objectives (e.g., max and sum) can be simultaneously approximated compared to their optimum outcomes. In particular, we show that for any such pair of objectives, it is always possible to choose an outcome which simultaneously approximates both objectives within a factor of $1+\sqrt{2}$, and give a precise characterization of how this factor improves as the two objectives being optimized become more similar. For $q>2$ different centrum objectives, we show that it is always possible to approximate all $q$ of these objectives within a small constant, and that this constant approaches 3 as $q\rightarrow \infty$. Our results show that when optimizing only a few simultaneous objectives, it is always possible to form an outcome which is a significantly better than 3 approximation for all of these objectives.


Awareness of Voter Passion Greatly Improves the Distortion of Metric Social Choice

arXiv.org Artificial Intelligence

We develop new voting mechanisms for the case when voters and candidates are located in an arbitrary unknown metric space, and the goal is to choose a candidate minimizing social cost: the total distance from the voters to this candidate. Previous work has often assumed that only ordinal preferences of the voters are known (instead of their true costs), and focused on minimizing distortion: the quality of the chosen candidate as compared with the best possible candidate. In this paper, we instead assume that a (very small) amount of information is known about the voter preference strengths, not just about their ordinal preferences. We provide mechanisms with much better distortion when this extra information is known as compared to mechanisms which use only ordinal information. We quantify tradeoffs between the amount of information known about preference strengths and the achievable distortion. We further provide advice about which type of information about preference strengths seems to be the most useful. Finally, we conclude by quantifying the ideal candidate distortion, which compares the quality of the chosen outcome with the best possible candidate that could ever exist, instead of only the best candidate that is actually in the running.


Utilitarians Without Utilities: Maximizing Social Welfare for Graph Problems Using Only Ordinal Preferences

AAAI Conferences

We consider ordinal approximation algorithms for a broad class of utility maximization problems for multi-agent systems. In these problems, agents have utilities for connecting to each other, and the goal is to compute a maximum-utility solution subject to a set of constraints. We represent these as a class of graph optimization problems, including matching, spanning tree problems, TSP, maximum weight planar subgraph, and many others. We study these problems in the ordinal setting: latent numerical utilities exist, but we only have access to ordinal preference information, i.e., every agent specifies an ordering over the other agents by preference. We prove that for the large class of graph problems we identify, ordinal information is enough to compute solutions which are close to optimal, thus demonstrating there is no need to know the underlying numerical utilities. For example, for problems in this class with bounded degree b a simple ordinal greedy algorithm always produces a (b + 1)-approximation; we also quantify how the quality of ordinal approximation depends on the sparsity of the resulting graphs. In particular, our results imply that ordinal information is enough to obtain a 2-approximation for Maximum Spanning Tree; a 4-approximation for Max Weight Planar Subgraph; a 2-approximation for Max-TSP; and a 2- approximation for various Matching problems.


Vote Until Two of You Agree: Mechanisms with Small Distortion and Sample Complexity

AAAI Conferences

To design social choice mechanisms with desirable utility properties, normative properties, and low sample complexity, we propose a new randomized mechanism called 2-Agree. This mechanism asks random voters for their top alternatives until at least two voters agree, at which point it selects that alternative as the winner. We prove that, despite its simplicity and low sample complexity, 2-Agree achieves almost optimal distortion on a metric space when the number of alternatives is not large, and satisfies anonymity, neutrality, ex-post Pareto efficiency, very strong SD-participation, and is approximately truthful. We further show that 2-Agree works well for larger number of alternatives with decisive agents.


Randomized Social Choice Functions Under Metric Preferences

arXiv.org Artificial Intelligence

We determine the quality of randomized social choice mechanisms in a setting in which the agents have metric preferences: every agent has a cost for each alternative, and these costs form a metric. We assume that these costs are unknown to the mechanisms (and possibly even to the agents themselves), which means we cannot simply select the optimal alternative, i.e. the alternative that minimizes the total agent cost (or median agent cost). However, we do assume that the agents know their ordinal preferences that are induced by the metric space. We examine randomized social choice functions that require only this ordinal information and select an alternative that is good in expectation with respect to the costs from the metric. To quantify how good a randomized social choice function is, we bound the distortion, which is the worst-case ratio between expected cost of the alternative selected and the cost of the optimal alternative. We provide new distortion bounds for a variety of randomized mechanisms, for both general metrics and for important special cases. Our results show a sizable improvement in distortion over deterministic mechanisms.


Blind, Greedy, and Random: Algorithms for Matching and Clustering Using Only Ordinal Information

AAAI Conferences

We study the Maximum Weighted Matching problem in a partial information setting where the agents' utilities for being matched to other agents are hidden and the mechanism only has access to ordinal preference information. Our model is motivated by the fact that in many settings, agents cannot express the numerical values of their utility for different outcomes, but are still able to rank the outcomes in their order of preference. Specifically, we study problems where the ground truth exists in the form of a weighted graph, and look to design algorithms that approximate the true optimum matching using only the preference orderings for each agent (induced by the hidden weights) as input. If no restrictions are placed on the weights, then one cannot hope to do better than the simple greedy algorithm, which yields a half optimal matching. Perhaps surprisingly, we show that by imposing a little structure on the weights, we can improve upon the trivial algorithm significantly: we design a 1.6-approximation algorithm for instances where the hidden weights obey the metric inequality. Our algorithm is obtained using a simple but powerful framework that allows us to combine greedy and random techniques in unconventional ways. These results are the first non-trivial ordinal approximation algorithms for such problems, and indicate that we can design robust matchings even when we are agnostic to the precise agent utilities.


Approximate Equilibrium and Incentivizing Social Coordination

AAAI Conferences

We study techniques to incentivize self-interested agents to form socially desirable solutions in scenarios where they benefit from mutual coordination. Towards this end, we consider coordination games where agents have different intrinsic preferences but they stand to gain if others choose the same strategy as them. For non-trivial versions of our game, stable solutions like Nash Equilibrium may not exist, or may be socially inefficient even when they do exist. This motivates us to focus on designing efficient algorithms to compute (almost) stable solutions like Approximate Equilibrium that can be realized if agents are provided some additional incentives. Our results apply in many settings like adoption of new products, project selection, and group formation, where a central authority can direct agents towards a strategy but agents may defect if they have better alternatives. We show that for any given instance, we can either compute a high quality approximate equilibrium or a near-optimal solution that can be stabilized by providing small payments to some players. Our results imply that a little influence is necessary in order to ensure that selfish players coordinate and form socially efficient solutions.


On the Social Welfare of Mechanisms for Repeated Batch Matching

AAAI Conferences

We study hybrid online-batch matching problems, where agents arrive continuously, but are only matched in periodic rounds, when many of them can be considered simultaneously. Agents not getting matched in a given round remain in the market for the next round. This setting models several scenarios of interest, including many job markets as well as kidney exchange mechanisms. We consider the social utility of two commonly used mechanisms for such markets: one that aims for stability in each round (greedy), and one that attempts to maximize social utility in each round (max-weight). Surprisingly, we find that in the long term, the social utility of the greedy mechanism can be higher than that of the max-weight mechanism. We hypothesize that this is because the greedy mechanism behaves similarly to a soft threshold mechanism, where all connections below a certain threshold are rejected by the participants in favor of waiting until the next round. Motivated by this observation, we propose a method to approximately calculate the optimal threshold for an individual agent to use based on characteristics of the other agents participating, and demonstrate experimentally that social utility is high when all agents use this strategy. Thresholding can also be applied by the mechanism itself to improve social welfare; we demonstrate this with an example on graphs that model pairwise kidney exchange.