Ankit Singh Rawat
Multilabel reductions: what is my loss optimising?
Aditya K. Menon, Ankit Singh Rawat, Sashank Reddi, Sanjiv Kumar
Multilabel classification is a challenging problem arising in applications ranging from information retrieval to image tagging. A popular approach to this problem is to employ a reduction to a suitable series of binary or multiclass problems (e.g., computing a softmax based cross-entropy over the relevant labels). While such methods have seen empirical success, less is understood about how well they approximate two fundamental performance measures: precision@k and recall@k. In this paper, we study five commonly used reductions, including the one-versus-all reduction, a reduction to multiclass classification, and normalised versions of the same, wherein the contribution of each instance is normalised by the number of relevant labels. Our main result is a formal justification of each reduction: we explicate their underlying risks, and show they are each consistent with respect to either precision or recall. Further, we show that in general no reduction can be optimal for both measures. We empirically validate our results, demonstrating scenarios where normalised reductions yield recall gains over unnormalised counterparts.
Sampled Softmax with Random Fourier Features
Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X. Yu, Ananda Theertha Suresh, Sanjiv Kumar
The computational cost of training with softmax cross entropy loss grows linearly with the number of classes. For the settings where a large number of classes are involved, a common method to speed up training is to sample a subset of classes and utilize an estimate of the loss gradient based on these classes, known as the sampled softmax method. However, the sampled softmax provides a biased estimate of the gradient unless the samples are drawn from the exact softmax distribution, which is again expensive to compute. Therefore, a widely employed practical approach involves sampling from a simpler distribution in the hope of approximating the exact softmax distribution. In this paper, we develop the first theoretical understanding of the role that different sampling distributions play in determining the quality of sampled softmax. Motivated by our analysis and the work on kernel-based sampling, we propose the Random Fourier Softmax (RFsoftmax) method that utilizes the powerful Random Fourier Features to enable more efficient and accurate sampling from an approximate softmax distribution. We show that RF-softmax leads to low bias in estimation in terms of both the full softmax distribution and the full softmax gradient.
Multilabel reductions: what is my loss optimising?
Aditya K. Menon, Ankit Singh Rawat, Sashank Reddi, Sanjiv Kumar
Multilabel classification is a challenging problem arising in applications ranging from information retrieval to image tagging. A popular approach to this problem is to employ a reduction to a suitable series of binary or multiclass problems (e.g., computing a softmax based cross-entropy over the relevant labels). While such methods have seen empirical success, less is understood about how well they approximate two fundamental performance measures: precision@k and recall@k. In this paper, we study five commonly used reductions, including the one-versus-all reduction, a reduction to multiclass classification, and normalised versions of the same, wherein the contribution of each instance is normalised by the number of relevant labels. Our main result is a formal justification of each reduction: we explicate their underlying risks, and show they are each consistent with respect to either precision or recall. Further, we show that in general no reduction can be optimal for both measures. We empirically validate our results, demonstrating scenarios where normalised reductions yield recall gains over unnormalised counterparts.
Associative Memory via a Sparse Recovery Model
Arya Mazumdar, Ankit Singh Rawat
An associative memory is a structure learned from a dataset M of vectors (signals) in a way such that, given a noisy version of one of the vectors as input, the nearest valid vector from M (nearest neighbor) is provided as output, preferably via a fast iterative algorithm. Traditionally, binary (or q-ary) Hopfield neural networks are used to model the above structure. In this paper, for the first time, we propose a model of associative memory based on sparse recovery of signals. Our basic premise is simple. For a dataset, we learn a set of linear constraints that every vector in the dataset must satisfy. Provided these linear constraints possess some special properties, it is possible to cast the task of finding nearest neighbor as a sparse recovery problem. Assuming generic random models for the dataset, we show that it is possible to store super-polynomial or exponential number of n-length vectors in a neural network of size O(n). Furthermore, given a noisy version of one of the stored vectors corrupted in near-linear number of coordinates, the vector can be correctly recalled using a neurally feasible algorithm.