Andreev, Sergey
Resource-Efficient Federated Hyperdimensional Computing
Zeulin, Nikita, Galinina, Olga, Himayat, Nageen, Andreev, Sergey
In conventional federated hyperdimensional computing (HDC), training larger models usually results in higher predictive performance but also requires more computational, communication, and energy resources. If the system resources are limited, one may have to sacrifice the predictive performance by reducing the size of the HDC model. The proposed resource-efficient federated hyperdimensional computing (RE-FHDC) framework alleviates such constraints by training multiple smaller independent HDC sub-models and refining the concatenated HDC model using the proposed dropout-inspired procedure. Our numerical comparison demonstrates that the proposed framework achieves a comparable or higher predictive performance while consuming less computational and wireless resources than the baseline federated HDC implementation.
Multi-Task Model Personalization for Federated Supervised SVM in Heterogeneous Networks
Ponomarenko-Timofeev, Aleksei, Galinina, Olga, Balakrishnan, Ravikumar, Himayat, Nageen, Andreev, Sergey, Koucheryavy, Yevgeni
Federated systems enable collaborative training on highly heterogeneous data through model personalization, which can be facilitated by employing multi-task learning algorithms. However, significant variation in device computing capabilities may result in substantial degradation in the convergence rate of training. To accelerate the learning procedure for diverse participants in a multi-task federated setting, more efficient and robust methods need to be developed. In this paper, we design an efficient iterative distributed method based on the alternating direction method of multipliers (ADMM) for support vector machines (SVMs), which tackles federated classification and regression. The proposed method utilizes efficient computations and model exchange in a network of heterogeneous nodes and allows personalization of the learning model in the presence of non-i.i.d. data. To further enhance privacy, we introduce a random mask procedure that helps avoid data inversion. Finally, we analyze the impact of the proposed privacy mechanisms and participant hardware and data heterogeneity on the system performance.
Dynamic Network-Assisted D2D-Aided Coded Distributed Learning
Zeulin, Nikita, Galinina, Olga, Himayat, Nageen, Andreev, Sergey, Heath, Robert W. Jr
Today, various machine learning (ML) applications offer continuous data processing and real-time data analytics at the edge of a wireless network. Distributed real-time ML solutions are highly sensitive to the so-called straggler effect caused by resource heterogeneity and alleviated by various computation offloading mechanisms that seriously challenge the communication efficiency, especially in large-scale scenarios. To decrease the communication overhead, we rely on device-to-device (D2D) connectivity that improves spectrum utilization and allows efficient data exchange between devices in proximity. In particular, we design a novel D2D-aided coded federated learning method (D2D-CFL) for efficient load balancing across devices. The proposed solution captures system dynamics, including data (time-dependent learning model, varied intensity of data arrivals), device (diverse computational resources and volume of training data), and deployment (varied locations and D2D graph connectivity). To minimize the number of communication rounds, we derive an optimal compression rate for achieving minimum processing time and establish its connection with the convergence time. The resulting optimization problem provides suboptimal compression parameters, which improve the total training time. Our proposed method is beneficial for real-time collaborative applications, where the users continuously generate training data resulting in the model drift.
AI-Aided Integrated Terrestrial and Non-Terrestrial 6G Solutions for Sustainable Maritime Networking
Saafi, Salwa, Vikhrova, Olga, Fodor, Gábor, Hosek, Jiri, Andreev, Sergey
The maritime industry is experiencing a technological revolution that affects shipbuilding, operation of both seagoing and inland vessels, cargo management, and working practices in harbors. This ongoing transformation is driven by the ambition to make the ecosystem more sustainable and cost-efficient. Digitalization and automation help achieve these goals by transforming shipping and cruising into a much more cost- and energy-efficient, and decarbonized industry segment. The key enablers in these processes are always-available connectivity and content delivery services, which can not only aid shipping companies in improving their operational efficiency and reducing carbon emissions but also contribute to enhanced crew welfare and passenger experience. Due to recent advancements in integrating high-capacity and ultra-reliable terrestrial and non-terrestrial networking technologies, ubiquitous maritime connectivity is becoming a reality. To cope with the increased complexity of managing these integrated systems, this article advocates the use of artificial intelligence and machine learning-based approaches to meet the service requirements and energy efficiency targets in various maritime communications scenarios.