Anagnostides, Ioannis
Learning and Computation of $\Phi$-Equilibria at the Frontier of Tractability
Zhang, Brian Hu, Anagnostides, Ioannis, Tewolde, Emanuel, Berker, Ratip Emin, Farina, Gabriele, Conitzer, Vincent, Sandholm, Tuomas
$\Phi$-equilibria -- and the associated notion of $\Phi$-regret -- are a powerful and flexible framework at the heart of online learning and game theory, whereby enriching the set of deviations $\Phi$ begets stronger notions of rationality. Recently, Daskalakis, Farina, Fishelson, Pipis, and Schneider (STOC '24) -- abbreviated as DFFPS -- settled the existence of efficient algorithms when $\Phi$ contains only linear maps under a general, $d$-dimensional convex constraint set $\mathcal{X}$. In this paper, we significantly extend their work by resolving the case where $\Phi$ is $k$-dimensional; degree-$\ell$ polynomials constitute a canonical such example with $k = d^{O(\ell)}$. In particular, positing only oracle access to $\mathcal{X}$, we obtain two main positive results: i) a $\text{poly}(n, d, k, \text{log}(1/\epsilon))$-time algorithm for computing $\epsilon$-approximate $\Phi$-equilibria in $n$-player multilinear games, and ii) an efficient online algorithm that incurs average $\Phi$-regret at most $\epsilon$ using $\text{poly}(d, k)/\epsilon^2$ rounds. We also show nearly matching lower bounds in the online learning setting, thereby obtaining for the first time a family of deviations that captures the learnability of $\Phi$-regret. From a technical standpoint, we extend the framework of DFFPS from linear maps to the more challenging case of maps with polynomial dimension. At the heart of our approach is a polynomial-time algorithm for computing an expected fixed point of any $\phi : \mathcal{X} \to \mathcal{X}$ based on the ellipsoid against hope (EAH) algorithm of Papadimitriou and Roughgarden (JACM '08). In particular, our algorithm for computing $\Phi$-equilibria is based on executing EAH in a nested fashion -- each step of EAH itself being implemented by invoking a separate call to EAH.
Expected Variational Inequalities
Zhang, Brian Hu, Anagnostides, Ioannis, Tewolde, Emanuel, Berker, Ratip Emin, Farina, Gabriele, Conitzer, Vincent, Sandholm, Tuomas
Variational inequalities (VIs) encompass many fundamental problems in diverse areas ranging from engineering to economics and machine learning. However, their considerable expressivity comes at the cost of computational intractability. In this paper, we introduce and analyze a natural relaxation -- which we refer to as expected variational inequalities (EVIs) -- where the goal is to find a distribution that satisfies the VI constraint in expectation. By adapting recent techniques from game theory, we show that, unlike VIs, EVIs can be solved in polynomial time under general (nonmonotone) operators. EVIs capture the seminal notion of correlated equilibria, but enjoy a greater reach beyond games. We also employ our framework to capture and generalize several existing disparate results, including from settings such as smooth games, and games with coupled constraints or nonconcave utilities.
Barriers to Welfare Maximization with No-Regret Learning
Anagnostides, Ioannis, Kalavasis, Alkis, Sandholm, Tuomas
A celebrated result in the interface of online learning and game theory guarantees that the repeated interaction of no-regret players leads to a coarse correlated equilibrium (CCE) -- a natural game-theoretic solution concept. Despite the rich history of this foundational problem and the tremendous interest it has received in recent years, a basic question still remains open: how many iterations are needed for no-regret players to approximate an equilibrium? In this paper, we establish the first computational lower bounds for that problem in two-player (general-sum) games under the constraint that the CCE reached approximates the optimal social welfare (or some other natural objective). From a technical standpoint, our approach revolves around proving lower bounds for computing a near-optimal $T$-sparse CCE -- a mixture of $T$ product distributions, thereby circumscribing the iteration complexity of no-regret learning even in the centralized model of computation. Our proof proceeds by extending a classical reduction of Gilboa and Zemel [1989] for optimal Nash to sparse (approximate) CCE. In particular, we show that the inapproximability of maximum clique precludes attaining any non-trivial sparsity in polynomial time. Moreover, we strengthen our hardness results to apply in the low-precision regime as well via the planted clique conjecture.
Computational Lower Bounds for Regret Minimization in Normal-Form Games
Anagnostides, Ioannis, Kalavasis, Alkis, Sandholm, Tuomas
A celebrated connection in the interface of online learning and game theory establishes that players minimizing swap regret converge to correlated equilibria (CE) -- a seminal game-theoretic solution concept. Despite the long history of this problem and the renewed interest it has received in recent years, a basic question remains open: how many iterations are needed to approximate an equilibrium under the usual normal-form representation? In this paper, we provide evidence that existing learning algorithms, such as multiplicative weights update, are close to optimal. In particular, we prove lower bounds for the problem of computing a CE that can be expressed as a uniform mixture of $T$ product distributions -- namely, a uniform $T$-sparse CE; such lower bounds immediately circumscribe (computationally bounded) regret minimization algorithms in games. Our results are obtained in the algorithmic framework put forward by Kothari and Mehta (STOC 2018) in the context of computing Nash equilibria, which consists of the sum-of-squares (SoS) relaxation in conjunction with oracle access to a verification oracle; the goal in that framework is to lower bound either the degree of the SoS relaxation or the number of queries to the verification oracle. Here, we obtain two such hardness results, precluding computing i) uniform $\text{log }n$-sparse CE when $\epsilon =\text{poly}(1/\text{log }n)$ and ii) uniform $n^{1 - o(1)}$-sparse CE when $\epsilon = \text{poly}(1/n)$.
Optimistic Policy Gradient in Multi-Player Markov Games with a Single Controller: Convergence Beyond the Minty Property
Anagnostides, Ioannis, Panageas, Ioannis, Farina, Gabriele, Sandholm, Tuomas
Policy gradient methods enjoy strong practical performance in numerous tasks in reinforcement learning. Their theoretical understanding in multiagent settings, however, remains limited, especially beyond two-player competitive and potential Markov games. In this paper, we develop a new framework to characterize optimistic policy gradient methods in multi-player Markov games with a single controller. Specifically, under the further assumption that the game exhibits an equilibrium collapse, in that the marginals of coarse correlated equilibria (CCE) induce Nash equilibria (NE), we show convergence to stationary $\epsilon$-NE in $O(1/\epsilon^2)$ iterations, where $O(\cdot)$ suppresses polynomial factors in the natural parameters of the game. Such an equilibrium collapse is well-known to manifest itself in two-player zero-sum Markov games, but also occurs even in a class of multi-player Markov games with separable interactions, as established by recent work. As a result, we bypass known complexity barriers for computing stationary NE when either of our assumptions fails. Our approach relies on a natural generalization of the classical Minty property that we introduce, which we anticipate to have further applications beyond Markov games.
On the Convergence of No-Regret Learning Dynamics in Time-Varying Games
Anagnostides, Ioannis, Panageas, Ioannis, Farina, Gabriele, Sandholm, Tuomas
Most of the literature on learning in games has focused on the restrictive setting where the underlying repeated game does not change over time. Much less is known about the convergence of no-regret learning algorithms in dynamic multiagent settings. In this paper, we characterize the convergence of optimistic gradient descent (OGD) in time-varying games. Our framework yields sharp convergence bounds for the equilibrium gap of OGD in zero-sum games parameterized on natural variation measures of the sequence of games, subsuming known results for static games. Furthermore, we establish improved second-order variation bounds under strong convexity-concavity, as long as each game is repeated multiple times. Our results also apply to time-varying general-sum multi-player games via a bilinear formulation of correlated equilibria, which has novel implications for meta-learning and for obtaining refined variation-dependent regret bounds, addressing questions left open in prior papers. Finally, we leverage our framework to also provide new insights on dynamic regret guarantees in static games.
Near-Optimal $\Phi$-Regret Learning in Extensive-Form Games
Anagnostides, Ioannis, Farina, Gabriele, Sandholm, Tuomas
In this paper, we establish efficient and uncoupled learning dynamics so that, when employed by all players in multiplayer perfect-recall imperfect-information extensive-form games, the trigger regret of each player grows as $O(\log T)$ after $T$ repetitions of play. This improves exponentially over the prior best known trigger-regret bound of $O(T^{1/4})$, and settles a recent open question by Bai et al. (2022). As an immediate consequence, we guarantee convergence to the set of extensive-form correlated equilibria and coarse correlated equilibria at a near-optimal rate of $\frac{\log T}{T}$. Building on prior work, at the heart of our construction lies a more general result regarding fixed points deriving from rational functions with polynomial degree, a property that we establish for the fixed points of (coarse) trigger deviation functions. Moreover, our construction leverages a refined regret circuit for the convex hull, which -- unlike prior guarantees -- preserves the RVU property introduced by Syrgkanis et al. (NIPS, 2015); this observation has an independent interest in establishing near-optimal regret under learning dynamics based on a CFR-type decomposition of the regret.
Near-Optimal No-Regret Learning for Correlated Equilibria in Multi-Player General-Sum Games
Anagnostides, Ioannis, Daskalakis, Constantinos, Farina, Gabriele, Fishelson, Maxwell, Golowich, Noah, Sandholm, Tuomas
Recently, Daskalakis, Fishelson, and Golowich (DFG) (NeurIPS`21) showed that if all agents in a multi-player general-sum normal-form game employ Optimistic Multiplicative Weights Update (OMWU), the external regret of every player is $O(\textrm{polylog}(T))$ after $T$ repetitions of the game. We extend their result from external regret to internal regret and swap regret, thereby establishing uncoupled learning dynamics that converge to an approximate correlated equilibrium at the rate of $\tilde{O}(T^{-1})$. This substantially improves over the prior best rate of convergence for correlated equilibria of $O(T^{-3/4})$ due to Chen and Peng (NeurIPS`20), and it is optimal -- within the no-regret framework -- up to polylogarithmic factors in $T$. To obtain these results, we develop new techniques for establishing higher-order smoothness for learning dynamics involving fixed point operations. Specifically, we establish that the no-internal-regret learning dynamics of Stoltz and Lugosi (Mach Learn`05) are equivalently simulated by no-external-regret dynamics on a combinatorial space. This allows us to trade the computation of the stationary distribution on a polynomial-sized Markov chain for a (much more well-behaved) linear transformation on an exponential-sized set, enabling us to leverage similar techniques as DFG to near-optimally bound the internal regret. Moreover, we establish an $O(\textrm{polylog}(T))$ no-swap-regret bound for the classic algorithm of Blum and Mansour (BM) (JMLR`07). We do so by introducing a technique based on the Cauchy Integral Formula that circumvents the more limited combinatorial arguments of DFG. In addition to shedding clarity on the near-optimal regret guarantees of BM, our arguments provide insights into the various ways in which the techniques by DFG can be extended and leveraged in the analysis of more involved learning algorithms.
Metric-Distortion Bounds under Limited Information
Anagnostides, Ioannis | Fotakis, Dimitris (National Technical University of Athens) | Patsilinakos, Panagiotis (National Technical University of Athens)
In this work, we study the metric distortion problem in voting theory under a limited amount of ordinal information. Our primary contribution is threefold. First, we consider mechanisms that perform a sequence of pairwise comparisons between candidates. We show that a popular deterministic mechanism employed in many knockout phases yields distortion O(log m) while eliciting only m − 1 out of the Θ(m2 ) possible pairwise comparisons, where m represents the number of candidates. Our analysis for this mechanism leverages a powerful technical lemma developed by Kempe (AAAI ‘20). We also provide a matching lower bound on its distortion. In contrast, we prove that any mechanism which performs fewer than m−1 pairwise comparisons is destined to have unbounded distortion. Moreover, we study the power of deterministic mechanisms under incomplete rankings. Most notably, when agents provide their k-top preferences we show an upper bound of 6m/k + 1 on the distortion, for any k ∈ {1, 2, . . . , m}. Thus, we substantially improve over the previous bound of 12m/k established by Kempe (AAAI ‘20), and we come closer to matching the best-known lower bound. Finally, we are concerned with the sample complexity required to ensure near-optimal distortion with high probability. Our main contribution is to show that a random sample of Θ(m/ϵ2 ) voters suffices to guarantee distortion 3 + ϵ with high probability, for any sufficiently small ϵ > 0. This result is based on analyzing the sensitivity of the deterministic mechanism introduced by Gkatzelis, Halpern, and Shah (FOCS ‘20). Importantly, all of our sample-complexity bounds are distribution-independent. From an experimental standpoint, we present several empirical findings on real-life voting applications, comparing the scoring systems employed in practice with a mechanism explicitly minimizing (metric) distortion. Interestingly, for our case studies, we find that the winner in the actual competition is typically the candidate who minimizes the distortion.
Robust Learning under Strong Noise via SQs
Anagnostides, Ioannis, Gouleakis, Themis, Marashian, Ali
This work provides several new insights on the robustness of Kearns' statistical query framework against challenging label-noise models. First, we build on a recent result by \cite{DBLP:journals/corr/abs-2006-04787} that showed noise tolerance of distribution-independently evolvable concept classes under Massart noise. Specifically, we extend their characterization to more general noise models, including the Tsybakov model which considerably generalizes the Massart condition by allowing the flipping probability to be arbitrarily close to $\frac{1}{2}$ for a subset of the domain. As a corollary, we employ an evolutionary algorithm by \cite{DBLP:conf/colt/KanadeVV10} to obtain the first polynomial time algorithm with arbitrarily small excess error for learning linear threshold functions over any spherically symmetric distribution in the presence of spherically symmetric Tsybakov noise. Moreover, we posit access to a stronger oracle, in which for every labeled example we additionally obtain its flipping probability. In this model, we show that every SQ learnable class admits an efficient learning algorithm with OPT + $\epsilon$ misclassification error for a broad class of noise models. This setting substantially generalizes the widely-studied problem of classification under RCN with known noise rate, and corresponds to a non-convex optimization problem even when the noise function -- i.e. the flipping probabilities of all points -- is known in advance.