An, Bo
ResAct: Reinforcing Long-term Engagement in Sequential Recommendation with Residual Actor
Xue, Wanqi, Cai, Qingpeng, Zhan, Ruohan, Zheng, Dong, Jiang, Peng, Gai, Kun, An, Bo
Long-term engagement is preferred over immediate engagement in sequential recommendation as it directly affects product operational metrics such as daily active users (DAUs) and dwell time. Meanwhile, reinforcement learning (RL) is widely regarded as a promising framework for optimizing long-term engagement in sequential recommendation. However, due to expensive online interactions, it is very difficult for RL algorithms to perform state-action value estimation, exploration and feature extraction when optimizing long-term engagement. In this paper, we propose ResAct which seeks a policy that is close to, but better than, the online-serving policy. In this way, we can collect sufficient data near the learned policy so that state-action values can be properly estimated, and there is no need to perform online exploration. ResAct optimizes the policy by first reconstructing the online behaviors and then improving it via a Residual Actor. To extract long-term information, ResAct utilizes two information-theoretical regularizers to confirm the expressiveness and conciseness of features. We conduct experiments on a benchmark dataset and a large-scale industrial dataset which consists of tens of millions of recommendation requests. Experimental results show that our method significantly outperforms the state-of-the-art baselines in various long-term engagement optimization tasks.
Partial-Label Regression
Cheng, Xin, Wang, Deng-Bao, Feng, Lei, Zhang, Min-Ling, An, Bo
Partial-label learning is a popular weakly supervised learning setting that allows each training example to be annotated with a set of candidate labels. Previous studies on partial-label learning only focused on the classification setting where candidate labels are all discrete, which cannot handle continuous labels with real values. In this paper, we provide the first attempt to investigate partial-label regression, where each training example is annotated with a set of real-valued candidate labels. To solve this problem, we first propose a simple baseline method that takes the average loss incurred by candidate labels as the predictive loss. The drawback of this method lies in that the loss incurred by the true label may be overwhelmed by other false labels. To overcome this drawback, we propose an identification method that takes the least loss incurred by candidate labels as the predictive loss. We further improve it by proposing a progressive identification method to differentiate candidate labels using progressively updated weights for incurred losses. We prove that the latter two methods are model-consistent and provide convergence analyses. Our proposed methods are theoretically grounded and can be compatible with any models, optimizers, and losses. Experiments validate the effectiveness of our proposed methods.
Mitigating Memorization of Noisy Labels by Clipping the Model Prediction
Wei, Hongxin, Zhuang, Huiping, Xie, Renchunzi, Feng, Lei, Niu, Gang, An, Bo, Li, Yixuan
In the presence of noisy labels, designing robust loss functions is critical for securing the generalization performance of deep neural networks. Cross Entropy (CE) loss has been shown to be not robust to noisy labels due to its unboundedness. To alleviate this issue, existing works typically design specialized robust losses with the symmetric condition, which usually lead to the underfitting issue. In this paper, our key idea is to induce a loss bound at the logit level, thus universally enhancing the noise robustness of existing losses. Specifically, we propose logit clipping (LogitClip), which clamps the norm of the logit vector to ensure that it is upper bounded by a constant. In this manner, CE loss equipped with our LogitClip method is effectively bounded, mitigating the overfitting to examples with noisy labels. Moreover, we present theoretical analyses to certify the noise-tolerant ability of LogitClip. Extensive experiments show that LogitClip not only significantly improves the noise robustness of CE loss, but also broadly enhances the generalization performance of popular robust losses.
PrefRec: Recommender Systems with Human Preferences for Reinforcing Long-term User Engagement
Xue, Wanqi, Cai, Qingpeng, Xue, Zhenghai, Sun, Shuo, Liu, Shuchang, Zheng, Dong, Jiang, Peng, Gai, Kun, An, Bo
Current advances in recommender systems have been remarkably successful in optimizing immediate engagement. However, long-term user engagement, a more desirable performance metric, remains difficult to improve. Meanwhile, recent reinforcement learning (RL) algorithms have shown their effectiveness in a variety of long-term goal optimization tasks. For this reason, RL is widely considered as a promising framework for optimizing long-term user engagement in recommendation. Though promising, the application of RL heavily relies on well-designed rewards, but designing rewards related to long-term user engagement is quite difficult. To mitigate the problem, we propose a novel paradigm, recommender systems with human preferences (or Preference-based Recommender systems), which allows RL recommender systems to learn from preferences about users historical behaviors rather than explicitly defined rewards. Such preferences are easily accessible through techniques such as crowdsourcing, as they do not require any expert knowledge. With PrefRec, we can fully exploit the advantages of RL in optimizing long-term goals, while avoiding complex reward engineering. PrefRec uses the preferences to automatically train a reward function in an end-to-end manner. The reward function is then used to generate learning signals to train the recommendation policy. Furthermore, we design an effective optimization method for PrefRec, which uses an additional value function, expectile regression and reward model pre-training to improve the performance. We conduct experiments on a variety of long-term user engagement optimization tasks. The results show that PrefRec significantly outperforms previous state-of-the-art methods in all the tasks.
Classifying Ambiguous Identities in Hidden-Role Stochastic Games with Multi-Agent Reinforcement Learning
Han, Shijie, Li, Siyuan, An, Bo, Zhao, Wei, Liu, Peng
Multi-agent reinforcement learning (MARL) is a prevalent learning paradigm for solving stochastic games. In most MARL studies, agents in a game are defined as teammates or enemies beforehand, and the relationships among the agents remain fixed throughout the game. However, in real-world problems, the agent relationships are commonly unknown in advance or dynamically changing. Many multi-party interactions start off by asking: who is on my team? This question arises whether it is the first day at the stock exchange or the kindergarten. Therefore, training policies for such situations in the face of imperfect information and ambiguous identities is an important problem that needs to be addressed. In this work, we develop a novel identity detection reinforcement learning (IDRL) framework that allows an agent to dynamically infer the identities of nearby agents and select an appropriate policy to accomplish the task. In the IDRL framework, a relation network is constructed to deduce the identities of other agents by observing the behaviors of the agents. A danger network is optimized to estimate the risk of false-positive identifications. Beyond that, we propose an intrinsic reward that balances the need to maximize external rewards and accurate identification. After identifying the cooperation-competition pattern among the agents, IDRL applies one of the off-the-shelf MARL methods to learn the policy. To evaluate the proposed method, we conduct experiments on Red-10 card-shedding game, and the results show that IDRL achieves superior performance over other state-of-the-art MARL methods. Impressively, the relation network has the par performance to identify the identities of agents with top human players; the danger network reasonably avoids the risk of imperfect identification. The code to reproduce all the reported results is available online at https://github.com/MR-BENjie/IDRL.
PRUDEX-Compass: Towards Systematic Evaluation of Reinforcement Learning in Financial Markets
Sun, Shuo, Qin, Molei, Wang, Xinrun, An, Bo
The financial markets, which involve more than $90 trillion market capitals, attract the attention of innumerable investors around the world. Recently, reinforcement learning in financial markets (FinRL) has emerged as a promising direction to train agents for making profitable investment decisions. However, the evaluation of most FinRL methods only focuses on profit-related measures and ignores many critical axes, which are far from satisfactory for financial practitioners to deploy these methods into real-world financial markets. Therefore, we introduce PRUDEX-Compass, which has 6 axes, i.e., Profitability, Risk-control, Universality, Diversity, rEliability, and eXplainability, with a total of 17 measures for a systematic evaluation. Specifically, i) we propose AlphaMix+ as a strong FinRL baseline, which leverages mixture-of-experts (MoE) and risk-sensitive approaches to make diversified risk-aware investment decisions, ii) we evaluate 8 FinRL methods in 4 long-term real-world datasets of influential financial markets to demonstrate the usage of our PRUDEX-Compass, iii) PRUDEX-Compass together with 4 real-world datasets, standard implementation of 8 FinRL methods and a portfolio management environment is released as public resources to facilitate the design and comparison of new FinRL methods. We hope that PRUDEX-Compass can not only shed light on future FinRL research to prevent untrustworthy results from stagnating FinRL into successful industry deployment but also provide a new challenging algorithm evaluation scenario for the reinforcement learning (RL) community.
Population-size-Aware Policy Optimization for Mean-Field Games
Li, Pengdeng, Wang, Xinrun, Li, Shuxin, Chan, Hau, An, Bo
In this work, we attempt to bridge the two fields of finite-agent and infinite-agent games, by studying how the optimal policies of agents evolve with the number of agents (population size) in mean-field games, an agent-centric perspective in contrast to the existing works focusing typically on the convergence of the empirical distribution of the population. To this end, the premise is to obtain the optimal policies of a set of finite-agent games with different population sizes. However, either deriving the closed-form solution for each game is theoretically intractable, training a distinct policy for each game is computationally intensive, or directly applying the policy trained in a game to other games is sub-optimal. We address these challenges through the Population-size-Aware Policy Optimization (PAPO). Our contributions are three-fold. First, to efficiently generate efficient policies for games with different population sizes, we propose PAPO, which unifies two natural options (augmentation and hypernetwork) and achieves significantly better performance. PAPO consists of three components: i) the population-size encoding which transforms the original value of population size to an equivalent encoding to avoid training collapse, ii) a hypernetwork to generate a distinct policy for each game conditioned on the population size, and iii) the population size as an additional input to the generated policy. Next, we construct a multi-task-based training procedure to efficiently train the neural networks of PAPO by sampling data from multiple games with different population sizes. Finally, extensive experiments on multiple environments show the significant superiority of PAPO over baselines, and the analysis of the evolution of the generated policies further deepens our understanding of the two fields of finite-agent and infinite-agent games.
Towards Skilled Population Curriculum for Multi-Agent Reinforcement Learning
Wang, Rundong, Zheng, Longtao, Qiu, Wei, He, Bowei, An, Bo, Rabinovich, Zinovi, Hu, Yujing, Chen, Yingfeng, Lv, Tangjie, Fan, Changjie
Recent advances in multi-agent reinforcement learning (MARL) allow agents to coordinate their behaviors in complex environments. However, common MARL algorithms still suffer from scalability and sparse reward issues. One promising approach to resolving them is automatic curriculum learning (ACL). ACL involves a student (curriculum learner) training on tasks of increasing difficulty controlled by a teacher (curriculum generator). Despite its success, ACL's applicability is limited by (1) the lack of a general student framework for dealing with the varying number of agents across tasks and the sparse reward problem, and (2) the non-stationarity of the teacher's task due to ever-changing student strategies. As a remedy for ACL, we introduce a novel automatic curriculum learning framework, Skilled Population Curriculum (SPC), which adapts curriculum learning to multi-agent coordination. Specifically, we endow the student with population-invariant communication and a hierarchical skill set, allowing it to learn cooperation and behavior skills from distinct tasks with varying numbers of agents. In addition, we model the teacher as a contextual bandit conditioned by student policies, enabling a team of agents to change its size while still retaining previously acquired skills. We also analyze the inherent non-stationarity of this multi-agent automatic curriculum teaching problem and provide a corresponding regret bound. Empirical results show that our method improves the performance, scalability and sample efficiency in several MARL environments.
Offline Equilibrium Finding
Li, Shuxin, Wang, Xinrun, Zhang, Youzhi, Cerny, Jakub, Li, Pengdeng, Chan, Hau, An, Bo
Offline reinforcement learning (offline RL) is an emerging field that has recently begun gaining attention across various application domains due to its ability to learn strategies from earlier collected datasets. Offline RL proved very successful, paving a path to solving previously intractable real-world problems, and we aim to generalize this paradigm to a multiplayer-game setting. To this end, we introduce a problem of offline equilibrium finding (OEF) and construct multiple types of datasets across a wide range of games using several established methods. To solve the OEF problem, we design a model-based framework that can directly apply any online equilibrium finding algorithm to the OEF setting while making minimal changes. The three most prominent contemporary online equilibrium finding algorithms are adapted to the context of OEF, creating three model-based variants: OEF-PSRO and OEF-CFR, which generalize the widely-used algorithms PSRO and Deep CFR to compute Nash equilibria (NEs), and OEF-JPSRO, which generalizes the JPSRO to calculate (Coarse) Correlated equilibria ((C)CEs). We also combine the behavior cloning policy with the model-based policy to further improve the performance and provide a theoretical guarantee of the solution quality. Extensive experimental results demonstrate the superiority of our approach over offline RL algorithms and the importance of using model-based methods for OEF problems. We hope our work will contribute to advancing research in large-scale equilibrium finding.
Reinforcement Learning from Diverse Human Preferences
Xue, Wanqi, An, Bo, Yan, Shuicheng, Xu, Zhongwen
The complexity of designing reward functions has been a major obstacle to the wide application of deep reinforcement learning (RL) techniques. Describing an agent's desired behaviors and properties can be difficult, even for experts. A new paradigm called reinforcement learning from human preferences (or preference-based RL) has emerged as a promising solution, in which reward functions are learned from human preference labels among behavior trajectories. However, existing methods for preference-based RL are limited by the need for accurate oracle preference labels. This paper addresses this limitation by developing a method for crowd-sourcing preference labels and learning from diverse human preferences. The key idea is to stabilize reward learning through regularization and correction in a latent space. To ensure temporal consistency, a strong constraint is imposed on the reward model that forces its latent space to be close to the prior distribution. Additionally, a confidence-based reward model ensembling method is designed to generate more stable and reliable predictions. The proposed method is tested on a variety of tasks in DMcontrol and Meta-world and has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback, paving the way for real-world applications of RL methods.