An, Bo



PROTECT -- A Deployed Game Theoretic System for Strategic Security Allocation for the United States Coast Guard

AI Magazine

While three deployed applications of game theory for security have recently been reported, we as a community of agents and AI researchers remain in the early stages of these deployments; there is a continuing need to understand the core principles for innovative security applications of game theory. PROTECT is premised on an attacker-defender Stackelberg game model and offers five key innovations. First, this system is a departure from the assumption of perfect adversary rationality noted in previous work, relying instead on a quantal response (QR) model of the adversary's behavior --- to the best of our knowledge, this is the first real-world deployment of the QR model. Fourth, our experimental results illustrate that PROTECT's QR model more robustly handles real-world uncertainties than a perfect rationality model.


PROTECT -- A Deployed Game Theoretic System for Strategic Security Allocation for the United States Coast Guard

AI Magazine

While three deployed applications of game theory for security have recently been reported, we as a community of agents and AI researchers remain in the early stages of these deployments; there is a continuing need to understand the core principles for innovative security applications of game theory. Towards that end, this paper presents PROTECT, a game-theoretic system deployed by the United States Coast Guard (USCG) in the port of Boston for scheduling their patrols. USCG has termed the deployment of PROTECT in Boston a success, and efforts are underway to test it in the port of New York, with the potential for nationwide deployment. PROTECT is premised on an attacker-defender Stackelberg game model and offers five key innovations. First, this system is a departure from the assumption of perfect adversary rationality noted in previous work, relying instead on a quantal response (QR) model of the adversary's behavior --- to the best of our knowledge, this is the first real-world deployment of the QR model. Second, to improve PROTECT's efficiency, we generate a compact representation of the defender's strategy space, exploiting equivalence and dominance. Third, we show how to practically model a real maritime patrolling problem as a Stackelberg game. Fourth, our experimental results illustrate that PROTECT's QR model more robustly handles real-world uncertainties than a perfect rationality model. Finally, in evaluating PROTECT, this paper for the first time provides real-world data: (i) comparison of human-generated vs PROTECT security schedules, and (ii) results from an Adversarial Perspective Team's (human mock attackers) analysis.


Reports of the AAAI 2012 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, was pleased to present the 2012 Spring Symposium Series, held Monday through Wednesday, March 26–28, 2012 at Stanford University, Stanford, California USA. The six symposia held were AI, The Fundamental Social Aggregation Challenge (cochaired by W. F. Lawless, Don Sofge, Mark Klein, and Laurent Chaudron); Designing Intelligent Robots (cochaired by George Konidaris, Byron Boots, Stephen Hart, Todd Hester, Sarah Osentoski, and David Wingate); Game Theory for Security, Sustainability, and Health (cochaired by Bo An and Manish Jain); Intelligent Web Services Meet Social Computing (cochaired by Tomas Vitvar, Harith Alani, and David Martin); Self-Tracking and Collective Intelligence for Personal Wellness (cochaired by Takashi Kido and Keiki Takadama); and Wisdom of the Crowd (cochaired by Caroline Pantofaru, Sonia Chernova, and Alex Sorokin). The papers of the six symposia were published in the AAAI technical report series.


An Overview of Recent Application Trends at the AAMAS Conference: Security, Sustainability and Safety

AI Magazine

A key feature of the AAMAS conference is its emphasis on ties to real-world applications. The focus of this article is to provide a broad overview of application-focused papers published at the AAMAS 2010 and 2011 conferences. More specifically, recent applications at AAMAS could be broadly categorized as belonging to research areas of security, sustainability and safety. We outline the domains of applications, key research thrusts underlying each such application area, and emerging trends.


Reports of the AAAI 2012 Spring Symposia

AI Magazine

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University’s Department of Computer Science, was pleased to present the 2012 Spring Symposium Series, held Monday through Wednesday, March 26–28, 2012 at Stanford University, Stanford, California USA. The six symposia held were AI, The Fundamental Social Aggregation Challenge (cochaired by W. F. Lawless, Don Sofge, Mark Klein, and Laurent Chaudron); Designing Intelligent Robots (cochaired by George Konidaris, Byron Boots, Stephen Hart, Todd Hester, Sarah Osentoski, and David Wingate); Game Theory for Security, Sustainability, and Health (cochaired by Bo An and Manish Jain); Intelligent Web Services Meet Social Computing (cochaired by Tomas Vitvar, Harith Alani, and David Martin); Self-Tracking and Collective Intelligence for Personal Wellness (cochaired by Takashi Kido and Keiki Takadama); and Wisdom of the Crowd (cochaired by Caroline Pantofaru, Sonia Chernova, and Alex Sorokin). The papers of the six symposia were published in the AAAI technical report series.


Security Games with Limited Surveillance

AAAI Conferences

Randomized first-mover strategies of Stackelberg games are used in several deployed applications to allocate limited resources for the protection of critical infrastructure. Stackelberg games model the fact that a strategic attacker can surveil and exploit the defender's strategy, and randomization guards against the worst effects by making the defender less predictable. In accordance with the standard game-theoretic model of Stackelberg games, past work has typically assumed that the attacker has perfect knowledge of the defender's randomized strategy and will react correspondingly. In light of the fact that surveillance is costly, risky, and delays an attack, this assumption is clearly simplistic: attackers will usually act on partial knowledge of the defender's strategies. The attacker's imperfect estimate could present opportunities and possibly also threats to a strategic defender. In this paper, we therefore begin a systematic study of security games with limited surveillance. We propose a natural model wherein an attacker forms or updates a belief based on observed actions, and chooses an optimal response. We investigate the model both theoretically and experimentally. In particular, we give mathematical programs to compute optimal attacker and defender strategies for a fixed observation duration, and show how to use them to estimate the attacker's observation durations. Our experimental results show that the defender can achieve significant improvement in expected utility by taking the attacker's limited surveillance into account, validating the motivation of our work.