Goto

Collaborating Authors

 Amin Karbasi


Do Less, Get More: Streaming Submodular Maximization with Subsampling

Neural Information Processing Systems

In this paper, we develop the first one-pass streaming algorithm for submodular maximization that does not evaluate the entire stream even once. By carefully subsampling each element of the data stream, our algorithm enjoys the tightest approximation guarantees in various settings while having the smallest memory footprint and requiring the lowest number of function evaluations. More specifically, for a monotone submodular function and a p-matchoid constraint, our randomized algorithm achieves a 4p approximation ratio (in expectation) with O(k) memory and O(km/p) queries per element (k is the size of the largest feasible solution and m is the number of matroids used to define the constraint).






Stochastic Continuous Greedy ++: When Upper and Lower Bounds Match

Neural Information Processing Systems

In this paper, we develop Stochastic Continuous Greedy++ (SCG++), the first efficient variant of a conditional gradient method for maximizing a continuous submodular function subject to a convex constraint.


Adaptive Sequence Submodularity

Neural Information Processing Systems

In many machine learning applications, one needs to interactively select a sequence of items (e.g., recommending movies based on a user's feedback) or make sequential decisions in a certain order (e.g., guiding an agent through a series of states). Not only do sequences already pose a dauntingly large search space, but we must also take into account past observations, as well as the uncertainty of future outcomes. Without further structure, finding an optimal sequence is notoriously challenging, if not completely intractable. In this paper, we view the problem of adaptive and sequential decision making through the lens of submodularity and propose an adaptive greedy policy with strong theoretical guarantees. Additionally, to demonstrate the practical utility of our results, we run experiments on Amazon product recommendation and Wikipedia link prediction tasks.


Estimating the Size of a Large Network and its Communities from a Random Sample

Neural Information Processing Systems

Most real-world networks are too large to be measured or studied directly and there is substantial interest in estimating global network properties from smaller sub-samples. One of the most important global properties is the number of vertices/nodes in the network. Estimating the number of vertices in a large network is a major challenge in computer science, epidemiology, demography, and intelligence analysis. In this paper we consider a population random graph G = (V, E) from the stochastic block model (SBM) with K communities/blocks. A sample is obtained by randomly choosing a subset W V and letting G(W) be the induced subgraph in G of the vertices in W. In addition to G(W), we observe the total degree of each sampled vertex and its block membership.


Fast Distributed Submodular Cover: Public-Private Data Summarization

Neural Information Processing Systems

In this paper, we introduce the public-private framework of data summarization motivated by privacy concerns in personalized recommender systems and online social services. Such systems have usually access to massive data generated by a large pool of users. A major fraction of the data is public and is visible to (and can be used for) all users. However, each user can also contribute some private data that should not be shared with other users to ensure her privacy. The goal is to provide a succinct summary of massive dataset, ideally as small as possible, from which customized summaries can be built for each user, i.e. it can contain elements from the public data (for diversity) and users' private data (for personalization). To formalize the above challenge, we assume that the scoring function according to which a user evaluates the utility of her summary satisfies submodularity, a widely used notion in data summarization applications. Thus, we model the data summarization targeted to each user as an instance of a submodular cover problem. However, when the data is massive it is infeasible to use the centralized greedy algorithm to find a customized summary even for a single user. Moreover, for a large pool of users, it is too time consuming to find such summaries separately.


Streaming Weak Submodularity: Interpreting Neural Networks on the Fly

Neural Information Processing Systems

In many machine learning applications, it is important to explain the predictions of a black-box classifier. For example, why does a deep neural network assign an image to a particular class? We cast interpretability of black-box classifiers as a combinatorial maximization problem and propose an efficient streaming algorithm to solve it subject to cardinality constraints. By extending ideas from Badanidiyuru et al. [2014], we provide a constant factor approximation guarantee for our algorithm in the case of random stream order and a weakly submodular objective function. This is the first such theoretical guarantee for this general class of functions, and we also show that no such algorithm exists for a worst case stream order.