Ambrogioni, Luca
Training Consistency Models with Variational Noise Coupling
Silvestri, Gianluigi, Ambrogioni, Luca, Lai, Chieh-Hsin, Takida, Yuhta, Mitsufuji, Yuki
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and improving its training dynamics is an active area of research. In this work, we propose a novel CT training approach based on the Flow Matching framework. Our main contribution is a trained noise-coupling scheme inspired by the architecture of Variational Autoencoders (VAE). By training a data-dependent noise emission model implemented as an encoder architecture, our method can indirectly learn the geometry of the noise-to-data mapping, which is instead fixed by the choice of the forward process in classical CT. Empirical results across diverse image datasets show significant generative improvements, with our model outperforming baselines and achieving the state-of-the-art (SoTA) non-distillation CT FID on CIFAR-10, and attaining FID on par with SoTA on ImageNet at $64 \times 64$ resolution in 2-step generation. Our code is available at https://github.com/sony/vct .
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Ventura, Enrico, Achilli, Beatrice, Silvestri, Gianluigi, Lucibello, Carlo, Ambrogioni, Luca
In this paper, we investigate the latent geometry of generative diffusion models under the manifold hypothesis. For this purpose, we analyze the spectrum of eigenvalues (and singular values) of the Jacobian of the score function, whose discontinuities (gaps) reveal the presence and dimensionality of distinct sub-manifolds. Using a statistical physics approach, we derive the spectral distributions and formulas for the spectral gaps under several distributional assumptions, and we compare these theoretical predictions with the spectra estimated from trained networks. Our analysis reveals the existence of three distinct qualitative phases during the generative process: a trivial phase; a manifold coverage phase where the diffusion process fits the distribution internal to the manifold; a consolidation phase where the score becomes orthogonal to the manifold and all particles are projected on the support of the data. This `division of labor' between different timescales provides an elegant explanation of why generative diffusion models are not affected by the manifold overfitting phenomenon that plagues likelihood-based models, since the internal distribution and the manifold geometry are produced at different time points during generation.
Losing dimensions: Geometric memorization in generative diffusion
Achilli, Beatrice, Ventura, Enrico, Silvestri, Gianluigi, Pham, Bao, Raya, Gabriel, Krotov, Dmitry, Lucibello, Carlo, Ambrogioni, Luca
Generative diffusion processes are state-of-the-art machine learning models deeply connected with fundamental concepts in statistical physics. Depending on the dataset size and the capacity of the network, their behavior is known to transition from an associative memory regime to a generalization phase in a phenomenon that has been described as a glassy phase transition. Here, using statistical physics techniques, we extend the theory of memorization in generative diffusion to manifold-supported data. Our theoretical and experimental findings indicate that different tangent subspaces are lost due to memorization effects at different critical times and dataset sizes, which depend on the local variance of the data along their directions. Perhaps counterintuitively, we find that, under some conditions, subspaces of higher variance are lost first due to memorization effects. This leads to a selective loss of dimensionality where some prominent features of the data are memorized without a full collapse on any individual training point. We validate our theory with a comprehensive set of experiments on networks trained both in image datasets and on linear manifolds, which result in a remarkable qualitative agreement with the theoretical predictions.
Robust and highly scalable estimation of directional couplings from time-shifted signals
Ambrogioni, Luca, Rouillard, Louis, Wassermann, Demian
The estimation of directed couplings between the nodes of a network from indirect measurements is a central methodological challenge in scientific fields such as neuroscience, systems biology and economics. Unfortunately, the problem is generally ill-posed due to the possible presence of unknown delays in the measurements. In this paper, we offer a solution of this problem by using a variational Bayes framework, where the uncertainty over the delays is marginalized in order to obtain conservative coupling estimates. To overcome the well-known overconfidence of classical variational methods, we use a hybrid-VI scheme where the (possibly flat or multimodal) posterior over the measurement parameters is estimated using a forward KL loss while the (nearly convex) conditional posterior over the couplings is estimated using the highly scalable gradient-based VI. In our ground-truth experiments, we show that the network provides reliable and conservative estimates of the couplings, greatly outperforming similar methods such as regression DCM.
In search of dispersed memories: Generative diffusion models are associative memory networks
Ambrogioni, Luca
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks. Like associative memory systems, these networks define a dynamical system that converges to a set of target states. In this work we show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is (asymptotically) identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this connection, we formulate a generalized framework for understanding the formation of long-term memory, where creative generation and memory recall can be seen as parts of a unified continuum.
The statistical thermodynamics of generative diffusion models
Ambrogioni, Luca
Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.
Spontaneous Symmetry Breaking in Generative Diffusion Models
Raya, Gabriel, Ambrogioni, Luca
Generative diffusion models have recently emerged as a leading approach for generating high-dimensional data. In this paper, we show that the dynamics of these models exhibit a spontaneous symmetry breaking that divides the generative dynamics into two distinct phases: 1) A linear steady-state dynamics around a central fixed-point and 2) an attractor dynamics directed towards the data manifold. These two "phases" are separated by the change in stability of the central fixed-point, with the resulting window of instability being responsible for the diversity of the generated samples. Using both theoretical and empirical evidence, we show that an accurate simulation of the early dynamics does not significantly contribute to the final generation, since early fluctuations are reverted to the central fixed point. To leverage this insight, we propose a Gaussian late initialization scheme, which significantly improves model performance, achieving up to 3x FID improvements on fast samplers, while also increasing sample diversity (e.g., racial composition of generated CelebA images). Our work offers a new way to understand the generative dynamics of diffusion models that has the potential to bring about higher performance and less biased fast-samplers.
Stationarity without mean reversion: Improper Gaussian process regression and improper kernels
Ambrogioni, Luca
Gaussian processes (GP) regression has gained substantial popularity in machine learning applications. The behavior of a GP regression depends on the choice of covariance function. Stationary covariance functions are favorite in machine learning applications. However, (non-periodic) stationary covariance functions are always mean reverting and can therefore exhibit pathological behavior when applied to data that does not relax to a fixed global mean value. In this paper, we show that it is possible to use improper GP prior with infinite variance to define processes that are stationary but not mean reverting. To this aim, we introduce a large class of improper kernels that can only be defined in this improper regime. Specifically, we introduce the Smooth Walk kernel, which produces infinitely smooth samples, and a family of improper Mat\'ern kernels, which can be defined to be $j$-times differentiable for any integer $j$. The resulting posterior distributions can be computed analytically and it involves a simple correction of the usual formulas. By analyzing both synthetic and real data, we demonstrate that these improper kernels solve some known pathologies of mean reverting GP regression while retaining most of the favourable properties of ordinary smooth stationary kernels.
Deterministic training of generative autoencoders using invertible layers
Silvestri, Gianluigi, Roos, Daan, Ambrogioni, Luca
In this work, we provide a deterministic alternative to the stochastic variational training of generative autoencoders. We refer to these new generative autoencoders as AutoEncoders within Flows (AEF), since the encoder and decoder are defined as affine layers of an overall invertible architecture. This results in a deterministic encoding of the data, as opposed to the stochastic encoding of VAEs. The paper introduces two related families of AEFs. The first family relies on a partition of the ambient space and is trained by exact maximum-likelihood. The second family exploits a deterministic expansion of the ambient space and is trained by maximizing the log-probability in this extended space. This latter case leaves complete freedom in the choice of encoder, decoder and prior architectures, making it a drop-in replacement for the training of existing VAEs and VAE-style models. We show that these AEFs can have strikingly higher performance than architecturally identical VAEs in terms of log-likelihood and sample quality, especially for low dimensional latent spaces. Importantly, we show that AEF samples are substantially sharper than VAE samples.
Embedded-model flows: Combining the inductive biases of model-free deep learning and explicit probabilistic modeling
Silvestri, Gianluigi, Fertig, Emily, Moore, Dave, Ambrogioni, Luca
Normalizing flows have shown great success as general-purpose density estimators. However, many real world applications require the use of domain-specific knowledge, which normalizing flows cannot readily incorporate. We propose embedded-model flows (EMF), which alternate general-purpose transformations with structured layers that embed domain-specific inductive biases. These layers are automatically constructed by converting user-specified differentiable probabilistic models into equivalent bijective transformations. We also introduce gated structured layers, which allow bypassing the parts of the models that fail to capture the statistics of the data. We demonstrate that EMFs can be used to induce desirable properties such as multimodality, hierarchical coupling and continuity. Furthermore, we show that EMFs enable a high performance form of variational inference where the structure of the prior model is embedded in the variational architecture. In our experiments, we show that this approach outperforms state-of-the-art methods in common structured inference problems.