Alvarez-Melis, David
Learning Generative Models across Incomparable Spaces
Bunne, Charlotte, Alvarez-Melis, David, Krause, Andreas, Jegelka, Stefanie
Generative Adversarial Networks have shown remarkable success in learning a distribution that faithfully recovers a reference distribution in its entirety. However, in some cases, we may want to only learn some aspects (e.g., cluster or manifold structure), while modifying others (e.g., style, orientation or dimension). In this work, we propose an approach to learn generative models across such incomparable spaces, and demonstrate how to steer the learned distribution towards target properties. A key component of our model is the Gromov-Wasserstein distance, a notion of discrepancy that compares distributions relationally rather than absolutely. While this framework subsumes current generative models in identically reproducing distributions, its inherent flexibility allows application to tasks in manifold learning, relational learning and cross-domain learning.
Functional Transparency for Structured Data: a Game-Theoretic Approach
Lee, Guang-He, Jin, Wengong, Alvarez-Melis, David, Jaakkola, Tommi S.
We provide a new approach to training neural models to exhibit transparency in a well-defined, functional manner. Our approach naturally operates over structured data and tailors the predictor, functionally, towards a chosen family of (local) witnesses. The estimation problem is setup as a co-operative game between an unrestricted predictor such as a neural network, and a set of witnesses chosen from the desired transparent family. The goal of the witnesses is to highlight, locally, how well the predictor conforms to the chosen family of functions, while the predictor is trained to minimize the highlighted discrepancy. We emphasize that the predictor remains globally powerful as it is only encouraged to agree locally with locally adapted witnesses. We analyze the effect of the proposed approach, provide example formulations in the context of deep graph and sequence models, and empirically illustrate the idea in chemical property prediction, temporal modeling, and molecule representation learning.
Game-Theoretic Interpretability for Temporal Modeling
Lee, Guang-He, Alvarez-Melis, David, Jaakkola, Tommi S.
Interpretability has arisen as a key desideratum of machine learning models alongside performance. Approaches so far have been primarily concerned with fixed dimensional inputs emphasizing feature relevance or selection. In contrast, we focus on temporal modeling and the problem of tailoring the predictor, functionally, towards an interpretable family. To this end, we propose a co-operative game between the predictor and an explainer without any a priori restrictions on the functional class of the predictor. The goal of the explainer is to highlight, locally, how well the predictor conforms to the chosen interpretable family of temporal models. Our co-operative game is setup asymmetrically in terms of information sets for efficiency reasons. We develop and illustrate the framework in the context of temporal sequence models with examples.
Towards Optimal Transport with Global Invariances
Alvarez-Melis, David, Jegelka, Stefanie, Jaakkola, Tommi S.
Many problems in machine learning involve calculating correspondences between sets of objects, such as point clouds or images. Discrete optimal transport (OT) provides a natural and successful approach to such tasks whenever the two sets of objects can be represented in the same space or when we can evaluate distances between the objects. Unfortunately neither requirement is likely to hold when object representations are learned from data. Indeed, automatically derived representations such as word embeddings are typically fixed only up to some global transformations, for example, reflection or rotation. As a result, pairwise distances across the two types of objects are ill-defined without specifying their relative transformation. In this work, we propose a general framework for optimal transport in the presence of latent global transformations. We discuss algorithms for the specific case of orthonormal transformations, and show promising results in unsupervised word alignment.
On the Robustness of Interpretability Methods
Alvarez-Melis, David, Jaakkola, Tommi S.
We argue that robustness of explanations---i.e., that similar inputs should give rise to similar explanations---is a key desideratum for interpretability. We introduce metrics to quantify robustness and demonstrate that current methods do not perform well according to these metrics. Finally, we propose ways that robustness can be enforced on existing interpretability approaches.
Towards Robust Interpretability with Self-Explaining Neural Networks
Alvarez-Melis, David, Jaakkola, Tommi S.
Most recent work on interpretability of complex machine learning models has focused on estimating $\textit{a posteriori}$ explanations for previously trained models around specific predictions. $\textit{Self-explaining}$ models where interpretability plays a key role already during learning have received much less attention. We propose three desiderata for explanations in general -- explicitness, faithfulness, and stability -- and show that existing methods do not satisfy them. In response, we design self-explaining models in stages, progressively generalizing linear classifiers to complex yet architecturally explicit models. Faithfulness and stability are enforced via regularization specifically tailored to such models. Experimental results across various benchmark datasets show that our framework offers a promising direction for reconciling model complexity and interpretability.
Structured Optimal Transport
Alvarez-Melis, David, Jaakkola, Tommi S., Jegelka, Stefanie
Optimal Transport has recently gained interest in machine learning for applications ranging from domain adaptation, sentence similarities to deep learning. Yet, its ability to capture frequently occurring structure beyond the "ground metric" is limited. In this work, we develop a nonlinear generalization of (discrete) optimal transport that is able to reflect much additional structure. We demonstrate how to leverage the geometry of this new model for fast algorithms, and explore connections and properties. Illustrative experiments highlight the benefit of the induced structured couplings for tasks in domain adaptation and natural language processing.
Topic Modeling in Twitter: Aggregating Tweets by Conversations
Alvarez-Melis, David (Massachusetts Institute of Technology) | Saveski, Martin (Massachusetts Institute of Technology)
We propose a new pooling technique for topic modeling in Twitter, which groups together tweets occurring in the same user-to-user conversation. Under this scheme, tweets and their replies are aggregated into a single document and the users who posted them are considered co-authors. To compare this new scheme against existing ones, we train topic models using Latent Dirichlet Allocation (LDA) and the Author-Topic Model (ATM) on datasets consisting of tweets pooled according to the different methods. Using the underlying categories of the tweets in this dataset as a noisy ground truth, we show that this new technique outperforms other pooling methods in terms of clustering quality and document retrieval.
Word, graph and manifold embedding from Markov processes
Hashimoto, Tatsunori B., Alvarez-Melis, David, Jaakkola, Tommi S.
Continuous vector representations of words and objects appear to carry surprisingly rich semantic content. In this paper, we advance both the conceptual and theoretical understanding of word embeddings in three ways. First, we ground embeddings in semantic spaces studied in cognitive-psychometric literature and introduce new evaluation tasks. Second, in contrast to prior work, we take metric recovery as the key object of study, unify existing algorithms as consistent metric recovery methods based on co-occurrence counts from simple Markov random walks, and propose a new recovery algorithm. Third, we generalize metric recovery to graphs and manifolds, relating co-occurence counts on random walks in graphs and random processes on manifolds to the underlying metric to be recovered, thereby reconciling manifold estimation and embedding algorithms. We compare embedding algorithms across a range of tasks, from nonlinear dimensionality reduction to three semantic language tasks, including analogies, sequence completion, and classification.