Not enough data to create a plot.
Try a different view from the menu above.
Althoff, Matthias
Predictive Traffic Rule Compliance using Reinforcement Learning
Huang, Yanliang, Mair, Sebastian, Zeng, Zhuoqi, Althoff, Matthias
--Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents an approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. Our main innovation is replacing the standard actor network in an actor-critic method with a motion planning module, which ensures both stable and interpretable trajectory generation. In this setup, we use traffic rule robustness as the reward to train a reinforcement learning agent's critic, and the output of the critic is directly used as the cost function of the motion planner, which guides the choices of the trajectory. We incorporate some key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, increasing safety and rule compliance in challenging traffic scenarios. HE field of autonomous driving has advanced substantially over the past five years. Although perception and prediction modules have become more reliable, planning systems still face challenges, particularly regarding safety assurance and operational robustness. Furthermore, traffic rule compliance remains a fundamental prerequisite for autonomous vehicles, both to protect road users and to satisfy legal certification standards. Recent research has effectively applied temporal logic to formalize traffic rules, enabling automated online monitoring systems [1]-[3] to continuously monitor the compliance of traffic rules. These approaches use the concept of rule robustness--a quantitative metric indicating how thoroughly specific traffic rules are satisfied or violated.
Trajectory Planning with Signal Temporal Logic Costs using Deterministic Path Integral Optimization
Halder, Patrick, Homburger, Hannes, Kiltz, Lothar, Reuter, Johannes, Althoff, Matthias
-- Formulating the intended behavior of a dynamic system can be challenging. Signal temporal logic (STL) is frequently used for this purpose due to its suitability in formalizing comprehensible, modular, and versatile spatiotemporal specifications. Due to scaling issues with respect to the complexity of the specifications and the potential occurrence of non-differentiable terms, classical optimization methods often solve STL-based problems inefficiently. Smoothing and approximation techniques can alleviate these issues but require changing the optimization problem. This paper proposes a novel sampling-based method based on model predictive path integral control to solve optimal control problems with STL cost functions. We demonstrate the effectiveness of our method on benchmark motion planning problems and compare its performance with state-of-the-art methods. The results show that our method efficiently solves optimal control problems with STL costs.
Intelligent Sailing Model for Open Sea Navigation
Krasowski, Hanna, Schärdinger, Stefan, Arcak, Murat, Althoff, Matthias
Autonomous vessels potentially enhance safety and reliability of seaborne trade. To facilitate the development of autonomous vessels, high-fidelity simulations are required to model realistic interactions with other vessels. However, modeling realistic interactive maritime traffic is challenging due to the unstructured environment, coarsely specified traffic rules, and largely varying vessel types. Currently, there is no standard for simulating interactive maritime environments in order to rigorously benchmark autonomous vessel algorithms. In this paper, we introduce the first intelligent sailing model (ISM), which simulates rule-compliant vessels for navigation on the open sea. An ISM vessel reacts to other traffic participants according to maritime traffic rules while at the same time solving a motion planning task characterized by waypoints. In particular, the ISM monitors the applicable rules, generates rule-compliant waypoints accordingly, and utilizes a model predictive control for tracking the waypoints. We evaluate the ISM in two environments: interactive traffic with only ISM vessels and mixed traffic where some vessel trajectories are from recorded real-world maritime traffic data or handcrafted for criticality. Our results show that simulations with many ISM vessels of different vessel types are rule-compliant and scalable. We tested 4,049 critical traffic scenarios. For interactive traffic with ISM vessels, no collisions occurred while goal-reaching rates of about 97 percent were achieved. We believe that our ISM can serve as a standard for challenging and realistic maritime traffic simulation to accelerate autonomous vessel development.
Holistic Construction Automation with Modular Robots: From High-Level Task Specification to Execution
Külz, Jonathan, Terzer, Michael, Magri, Marco, Giusti, Andrea, Althoff, Matthias
In situ robotic automation in construction is challenging due to constantly changing environments, a shortage of robotic experts, and a lack of standardized frameworks bridging robotics and construction practices. This work proposes a holistic framework for construction task specification, optimization of robot morphology, and mission execution using a mobile modular reconfigurable robot. Users can specify and monitor the desired robot behavior through a graphical interface. Our framework identifies an optimized robot morphology and enables automatic real-world execution by integrating Building Information Modelling (BIM). By leveraging modular robot components, we ensure seamless and fast adaption to the specific demands of the construction task. Experimental validation demonstrates that our approach robustly enables the autonomous execution of robotic drilling.
Traffic-Rule-Compliant Trajectory Repair via Satisfiability Modulo Theories and Reachability Analysis
Lin, Yuanfei, Xing, Zekun, Han, Xuyuan, Althoff, Matthias
Complying with traffic rules is challenging for automated vehicles, as numerous rules need to be considered simultaneously. If a planned trajectory violates traffic rules, it is common to replan a new trajectory from scratch. We instead propose a trajectory repair technique to save computation time. By coupling satisfiability modulo theories with set-based reachability analysis, we determine if and in what manner the initial trajectory can be repaired. Experiments in high-fidelity simulators and in the real world demonstrate the benefits of our proposed approach in various scenarios. Even in complex environments with intricate rules, we efficiently and reliably repair rule-violating trajectories, enabling automated vehicles to swiftly resume legally safe operation in real-time.
A General Safety Framework for Autonomous Manipulation in Human Environments
Thumm, Jakob, Balletshofer, Julian, Maglanoc, Leonardo, Muschal, Luis, Althoff, Matthias
Autonomous robots are projected to augment the manual workforce, especially in repetitive and hazardous tasks. For a successful deployment of such robots in human environments, it is crucial to guarantee human safety. State-of-the-art approaches to ensure human safety are either too restrictive to permit a natural human-robot collaboration or make strong assumptions that do not hold when for autonomous robots, e.g., knowledge of a pre-defined trajectory. Therefore, we propose SaRA-shield, a power and force limiting framework for AI-based manipulation in human environments that gives formal safety guarantees while allowing for fast robot speeds. As recent studies have shown that unconstrained collisions allow for significantly higher contact forces than constrained collisions (clamping), we propose to classify contacts by their collision type using reachability analysis. We then verify that the kinetic energy of the robot is below pain and injury thresholds for the detected collision type of the respective human body part in contact. Our real-world experiments show that SaRA-shield can effectively reduce the speed of the robot to adhere to injury-preventing energy limits.
Results of the 2023 CommonRoad Motion Planning Competition for Autonomous Vehicles
Kochdumper, Niklas, Wang, Youran, Betz, Johannes, Althoff, Matthias
In recent years, different approaches for motion planning of autonomous vehicles have been proposed that can handle complex traffic situations. However, these approaches are rarely compared on the same set of benchmarks. To address this issue, we present the results of a large-scale motion planning competition for autonomous vehicles based on the CommonRoad benchmark suite. The benchmark scenarios contain highway and urban environments featuring various types of traffic participants, such as passengers, cars, buses, etc. The solutions are evaluated considering efficiency, safety, comfort, and compliance with a selection of traffic rules. This report summarizes the main results of the competition.
Stepping Out of the Shadows: Reinforcement Learning in Shadow Mode
Gassert, Philipp, Althoff, Matthias
Reinforcement learning (RL) is not yet competitive for many cyber-physical systems, such as robotics, process automation, and power systems, as training on a system with physical components cannot be accelerated, and simulation models do not exist or suffer from a large simulation-to-reality gap. During the long training time, expensive equipment cannot be used and might even be damaged due to inappropriate actions of the reinforcement learning agent. Our novel approach addresses exactly this problem: We train the reinforcement agent in a so-called shadow mode with the assistance of an existing conventional controller, which does not have to be trained and instantaneously performs reasonably well. In shadow mode, the agent relies on the controller to provide action samples and guidance towards favourable states to learn the task, while simultaneously estimating for which states the learned agent will receive a higher reward than the conventional controller. The RL agent will then control the system for these states and all other regions remain under the control of the existing controller. Over time, the RL agent will take over for an increasing amount of states, while leaving control to the baseline, where it cannot surpass its performance. Thus, we keep regret during training low and improve the performance compared to only using conventional controllers or reinforcement learning. We present and evaluate two mechanisms for deciding whether to use the RL agent or the conventional controller. The usefulness of our approach is demonstrated for a reach-avoid task, for which we are able to effectively train an agent, where standard approaches fail.
Efficiently Obtaining Reachset Conformance for the Formal Analysis of Robotic Contact Tasks
Tang, Chencheng, Althoff, Matthias
Formal verification of robotic tasks requires a simple yet conformant model of the used robot. We present the first work on generating reachset conformant models for robotic contact tasks considering hybrid (mixed continuous and discrete) dynamics. Reachset conformance requires that the set of reachable outputs of the abstract model encloses all previous measurements to transfer safety properties. Aiming for industrial applications, we describe the system using a simple hybrid automaton with linear dynamics. We inject non-determinism into the continuous dynamics and the discrete transitions, and we optimally identify all model parameters together with the non-determinism required to capture the recorded behaviors. Using two 3-DOF robots, we show that our approach can effectively generate models to capture uncertainties in system behavior and substantially reduce the required testing effort in industrial applications.
Automatic Geometric Decomposition for Analytical Inverse Kinematics
Ostermeier, Daniel, Külz, Jonathan, Althoff, Matthias
Calculating the inverse kinematics (IK) is fundamental for motion planning in robotics. Compared to numerical or learning-based approaches, analytical IK provides higher efficiency and accuracy. However, existing analytical approaches require manual intervention, are ill-conditioned, or rely on time-consuming symbolic manipulation. In this paper, we propose a fast and stable method that enables automatic online derivation and computation of analytical inverse kinematics. Our approach is based on remodeling the kinematic chain of a manipulator to automatically decompose its IK into pre-solved geometric subproblems. We exploit intersecting and parallel joint axes to assign a given manipulator to a certain kinematic class and the corresponding subproblem decomposition. In numerical experiments, we demonstrate that our decomposition is orders of magnitudes faster in deriving the IK than existing tools that employ symbolic manipulation. Following this one-time derivation, our method matches and even surpasses baselines, such as IKFast, in terms of speed and accuracy during the online computation of explicit IK solutions. Finally, we provide a C++ toolbox with Python wrappers that, for the first time, enables plug-and-play analytical IK within less than a millisecond.