Goto

Collaborating Authors

 Allot, Alexis


Towards Accountable AI-Assisted Eye Disease Diagnosis: Workflow Design, External Validation, and Continual Learning

arXiv.org Artificial Intelligence

Timely disease diagnosis is challenging due to increasing disease burdens and limited clinician availability. AI shows promise in diagnosis accuracy but faces real-world application issues due to insufficient validation in clinical workflows and diverse populations. This study addresses gaps in medical AI downstream accountability through a case study on age-related macular degeneration (AMD) diagnosis and severity classification. We designed and implemented an AI-assisted diagnostic workflow for AMD, comparing diagnostic performance with and without AI assistance among 24 clinicians from 12 institutions with real patient data sampled from the Age-Related Eye Disease Study (AREDS). Additionally, we demonstrated continual enhancement of an existing AI model by incorporating approximately 40,000 additional medical images (named AREDS2 dataset). The improved model was then systematically evaluated using both AREDS and AREDS2 test sets, as well as an external test set from Singapore. AI assistance markedly enhanced diagnostic accuracy and classification for 23 out of 24 clinicians, with the average F1-score increasing by 20% from 37.71 (Manual) to 45.52 (Manual + AI) (P-value < 0.0001), achieving an improvement of over 50% in some cases. In terms of efficiency, AI assistance reduced diagnostic times for 17 out of the 19 clinicians tracked, with time savings of up to 40%. Furthermore, a model equipped with continual learning showed robust performance across three independent datasets, recording a 29% increase in accuracy, and elevating the F1-score from 42 to 54 in the Singapore population.


PubTator 3.0: an AI-powered Literature Resource for Unlocking Biomedical Knowledge

arXiv.org Artificial Intelligence

PubTator 3.0 (https://www.ncbi.nlm.nih.gov/research/pubtator3/) is a biomedical literature resource using state-of-the-art AI techniques to offer semantic and relation searches for key concepts like proteins, genetic variants, diseases, and chemicals. It currently provides over one billion entity and relation annotations across approximately 36 million PubMed abstracts and 6 million full-text articles from the PMC open access subset, updated weekly. PubTator 3.0's online interface and API utilize these precomputed entity relations and synonyms to provide advanced search capabilities and enable large-scale analyses, streamlining many complex information needs. We showcase the retrieval quality of PubTator 3.0 using a series of entity pair queries, demonstrating that PubTator 3.0 retrieves a greater number of articles than either PubMed or Google Scholar, with higher precision in the top 20 results. We further show that integrating ChatGPT (GPT-4) with PubTator APIs dramatically improves the factuality and verifiability of its responses. In summary, PubTator 3.0 offers a comprehensive set of features and tools that allow researchers to navigate the ever-expanding wealth of biomedical literature, expediting research and unlocking valuable insights for scientific discovery.


Multi-modal, multi-task, multi-attention (M3) deep learning detection of reticular pseudodrusen: towards automated and accessible classification of age-related macular degeneration

arXiv.org Artificial Intelligence

Objective Reticular pseudodrusen (RPD), a key feature of age-related macular degeneration (AMD), are poorly detected by human experts on standard color fundus photography (CFP) and typically require advanced imaging modalities such as fundus autofluorescence (FAF). The objective was to develop and evaluate the performance of a novel'M3' deep learning framework on RPD detection. Materials and Methods A deep learning framework M3 was developed to detect RPD presence accurately using CFP alone, FAF alone, or both, employing 8000 CFP-FAF image pairs obtained prospectively (Age-Related Eye Disease Study 2). The M3 framework includes multi-modal (detection from single or multiple image modalities), multi-task (training different tasks simultaneously to improve generalizability), and multi-attention (improving ensembled feature representation) operation. Performance on RPD detection was compared with state-of-the-art deep learning models and 13 ophthalmologists; performance on detection of two other AMD features (geographic atrophy and pigmentary abnormalities) was also evaluated. Results For RPD detection, M3 achieved area under receiver operating characteristic (AUROC) 0.832, 0.931, and 0.933 for CFP alone, FAF alone, and both, respectively. M3 performance on CFP was very substantially superior to human retinal specialists (median F1-score 0.644 versus 0.350). External validation (on Rotterdam Study, Netherlands) demonstrated high accuracy on CFP alone (AUROC 0.965). The M3 framework also accurately detected geographic atrophy and pigmentary abnormalities (AUROC 0.909 and 0.912, respectively), demonstrating its generalizability. Conclusion This study demonstrates the successful development, robust evaluation, and external validation of a novel deep learning framework that enables accessible, accurate, and automated AMD diagnosis and prognosis. INTRODUCTION Age-related macular degeneration (AMD) is the leading cause of legal blindness in developed countries [1 2]. Late AMD is the stage with the potential for severe visual loss; it takes two forms, geographic atrophy and neovascular AMD. AMD is traditionally diagnosed and classified using color fundus photography (CFP) [3], the most widely used and accessible imaging modality in ophthalmology. In the absence of late disease, two main features (macular drusen and pigmentary abnormalities) are used to classify disease and stratify risk of progression to late AMD [3]. More recently, additional imaging modalities have become available in specialist centers, particularly fundus autofluorescence (FAF) imaging [4 5]. Following these developments in retinal imaging, a third macular feature (reticular pseudodrusen, RPD) is now recognized as a key AMD lesion [6 7].