Goto

Collaborating Authors

 Allaway, Emily


Generics are puzzling. Can language models find the missing piece?

arXiv.org Artificial Intelligence

Generic sentences express generalisations about the world without explicit quantification. Although generics are central to everyday communication, building a precise semantic framework has proven difficult, in part because speakers use generics to generalise properties with widely different statistical prevalence. In this work, we study the implicit quantification and context-sensitivity of generics by leveraging language models as models of language. We create ConGen, a dataset of 2873 naturally occurring generic and quantified sentences in context, and define p-acceptability, a metric based on surprisal that is sensitive to quantification. Our experiments show generics are more context-sensitive than determiner quantifiers and about 20% of naturally occurring generics we analyze express weak generalisations. We also explore how human biases in stereotypes can be observed in language models.


Towards Countering Essentialism through Social Bias Reasoning

arXiv.org Artificial Intelligence

Essentialist beliefs (i.e., believing that members of the same group are fundamentally alike) play a central role in social stereotypes and can lead to harm when left unchallenged. In our work, we conduct exploratory studies into the task of countering essentialist beliefs (e.g., ``liberals are stupid''). Drawing on prior work from psychology and NLP, we construct five types of counterstatements and conduct human studies on the effectiveness of these different strategies. Our studies also investigate the role in choosing a counterstatement of the level of explicitness with which an essentialist belief is conveyed. We find that statements that broaden the scope of a stereotype (e.g., to other groups, as in ``conservatives can also be stupid'') are the most popular countering strategy. We conclude with a discussion of challenges and open questions for future work in this area (e.g., improving factuality, studying community-specific variation) and we emphasize the importance of work at the intersection of NLP and psychology.


Penguins Don't Fly: Reasoning about Generics through Instantiations and Exceptions

arXiv.org Artificial Intelligence

Generics express generalizations about the world (e.g., birds can fly) that are not universally true (e.g., newborn birds and penguins cannot fly). Commonsense knowledge bases, used extensively in NLP, encode some generic knowledge but rarely enumerate such exceptions and knowing when a generic statement holds or does not hold true is crucial for developing a comprehensive understanding of generics. We present a novel framework informed by linguistic theory to generate exemplars -- specific cases when a generic holds true or false. We generate ~19k exemplars for ~650 generics and show that our framework outperforms a strong GPT-3 baseline by 12.8 precision points. Our analysis highlights the importance of linguistic theory-based controllability for generating exemplars, the insufficiency of knowledge bases as a source of exemplars, and the challenges exemplars pose for the task of natural language inference.


Mitigating Covertly Unsafe Text within Natural Language Systems

arXiv.org Artificial Intelligence

An increasingly prevalent problem for intelligent technologies is text safety, as uncontrolled systems may generate recommendations to their users that lead to injury or life-threatening consequences. However, the degree of explicitness of a generated statement that can cause physical harm varies. In this paper, we distinguish types of text that can lead to physical harm and establish one particularly underexplored category: covertly unsafe text. Then, we further break down this category with respect to the system's information and discuss solutions to mitigate the generation of text in each of these subcategories. Ultimately, our work defines the problem of covertly unsafe language that causes physical harm and argues that this subtle yet dangerous issue needs to be prioritized by stakeholders and regulators. We highlight mitigation strategies to inspire future researchers to tackle this challenging problem and help improve safety within smart systems.


Legal and Political Stance Detection of SCOTUS Language

arXiv.org Artificial Intelligence

We analyze publicly available US Supreme Court documents using automated stance detection. In the first phase of our work, we investigate the extent to which the Court's public-facing language is political. We propose and calculate two distinct ideology metrics of SCOTUS justices using oral argument transcripts. We then compare these language-based metrics to existing social scientific measures of the ideology of the Supreme Court and the public. Through this cross-disciplinary analysis, we find that justices who are more responsive to public opinion tend to express their ideology during oral arguments. This observation provides a new kind of evidence in favor of the attitudinal change hypothesis of Supreme Court justice behavior. As a natural extension of this political stance detection, we propose the more specialized task of legal stance detection with our new dataset SC-stance, which matches written opinions to legal questions. We find competitive performance on this dataset using language adapters trained on legal documents.