Goto

Collaborating Authors

 Aliannejadi, Mohammad


Can We Use Large Language Models to Fill Relevance Judgment Holes?

arXiv.org Artificial Intelligence

Incomplete relevance judgments limit the re-usability of test collections. When new systems are compared against previous systems used to build the pool of judged documents, they often do so at a disadvantage due to the ``holes'' in test collection (i.e., pockets of un-assessed documents returned by the new system). In this paper, we take initial steps towards extending existing test collections by employing Large Language Models (LLM) to fill the holes by leveraging and grounding the method using existing human judgments. We explore this problem in the context of Conversational Search using TREC iKAT, where information needs are highly dynamic and the responses (and, the results retrieved) are much more varied (leaving bigger holes). While previous work has shown that automatic judgments from LLMs result in highly correlated rankings, we find substantially lower correlates when human plus automatic judgments are used (regardless of LLM, one/two/few shot, or fine-tuned). We further find that, depending on the LLM employed, new runs will be highly favored (or penalized), and this effect is magnified proportionally to the size of the holes. Instead, one should generate the LLM annotations on the whole document pool to achieve more consistent rankings with human-generated labels. Future work is required to prompt engineering and fine-tuning LLMs to reflect and represent the human annotations, in order to ground and align the models, such that they are more fit for purpose.


TREC iKAT 2023: A Test Collection for Evaluating Conversational and Interactive Knowledge Assistants

arXiv.org Artificial Intelligence

Conversational information seeking has evolved rapidly in the last few years with the development of Large Language Models (LLMs), providing the basis for interpreting and responding in a naturalistic manner to user requests. The extended TREC Interactive Knowledge Assistance Track (iKAT) collection aims to enable researchers to test and evaluate their Conversational Search Agents (CSA). The collection contains a set of 36 personalized dialogues over 20 different topics each coupled with a Personal Text Knowledge Base (PTKB) that defines the bespoke user personas. A total of 344 turns with approximately 26,000 passages are provided as assessments on relevance, as well as additional assessments on generated responses over four key dimensions: relevance, completeness, groundedness, and naturalness. The collection challenges CSA to efficiently navigate diverse personal contexts, elicit pertinent persona information, and employ context for relevant conversations. The integration of a PTKB and the emphasis on decisional search tasks contribute to the uniqueness of this test collection, making it an essential benchmark for advancing research in conversational and interactive knowledge assistants.


Rethinking the Evaluation of Dialogue Systems: Effects of User Feedback on Crowdworkers and LLMs

arXiv.org Artificial Intelligence

In ad-hoc retrieval, evaluation relies heavily on user actions, including implicit feedback. In a conversational setting such signals are usually unavailable due to the nature of the interactions, and, instead, the evaluation often relies on crowdsourced evaluation labels. The role of user feedback in annotators' assessment of turns in a conversational perception has been little studied. We focus on how the evaluation of task-oriented dialogue systems (TDSs), is affected by considering user feedback, explicit or implicit, as provided through the follow-up utterance of a turn being evaluated. We explore and compare two methodologies for assessing TDSs: one includes the user's follow-up utterance and one without. We use both crowdworkers and large language models (LLMs) as annotators to assess system responses across four aspects: relevance, usefulness, interestingness, and explanation quality. Our findings indicate that there is a distinct difference in ratings assigned by both annotator groups in the two setups, indicating user feedback does influence system evaluation. Workers are more susceptible to user feedback on usefulness and interestingness compared to LLMs on interestingness and relevance. User feedback leads to a more personalized assessment of usefulness by workers, aligning closely with the user's explicit feedback. Additionally, in cases of ambiguous or complex user requests, user feedback improves agreement among crowdworkers. These findings emphasize the significance of user feedback in refining system evaluations and suggest the potential for automated feedback integration in future research. We publicly release the annotated data to foster research in this area.


Ranked List Truncation for Large Language Model-based Re-Ranking

arXiv.org Artificial Intelligence

We study ranked list truncation (RLT) from a novel "retrieve-then-re-rank" perspective, where we optimize re-ranking by truncating the retrieved list (i.e., trim re-ranking candidates). RLT is crucial for re-ranking as it can improve re-ranking efficiency by sending variable-length candidate lists to a re-ranker on a per-query basis. It also has the potential to improve re-ranking effectiveness. Despite its importance, there is limited research into applying RLT methods to this new perspective. To address this research gap, we reproduce existing RLT methods in the context of re-ranking, especially newly emerged large language model (LLM)-based re-ranking. In particular, we examine to what extent established findings on RLT for retrieval are generalizable to the "retrieve-then-re-rank" setup from three perspectives: (i) assessing RLT methods in the context of LLM-based re-ranking with lexical first-stage retrieval, (ii) investigating the impact of different types of first-stage retrievers on RLT methods, and (iii) investigating the impact of different types of re-rankers on RLT methods. We perform experiments on the TREC 2019 and 2020 deep learning tracks, investigating 8 RLT methods for pipelines involving 3 retrievers and 2 re-rankers. We reach new insights into RLT methods in the context of re-ranking.


Context Does Matter: Implications for Crowdsourced Evaluation Labels in Task-Oriented Dialogue Systems

arXiv.org Artificial Intelligence

Crowdsourced labels play a crucial role in evaluating task-oriented dialogue systems (TDSs). Obtaining high-quality and consistent ground-truth labels from annotators presents challenges. When evaluating a TDS, annotators must fully comprehend the dialogue before providing judgments. Previous studies suggest using only a portion of the dialogue context in the annotation process. However, the impact of this limitation on label quality remains unexplored. This study investigates the influence of dialogue context on annotation quality, considering the truncated context for relevance and usefulness labeling. We further propose to use large language models (LLMs) to summarize the dialogue context to provide a rich and short description of the dialogue context and study the impact of doing so on the annotator's performance. Reducing context leads to more positive ratings. Conversely, providing the entire dialogue context yields higher-quality relevance ratings but introduces ambiguity in usefulness ratings. Using the first user utterance as context leads to consistent ratings, akin to those obtained using the entire dialogue, with significantly reduced annotation effort. Our findings show how task design, particularly the availability of dialogue context, affects the quality and consistency of crowdsourced evaluation labels.


CAUSE: Counterfactual Assessment of User Satisfaction Estimation in Task-Oriented Dialogue Systems

arXiv.org Artificial Intelligence

An important unexplored aspect in previous work on user satisfaction estimation for Task-Oriented Dialogue (TOD) systems is their evaluation in terms of robustness for the identification of user dissatisfaction: current benchmarks for user satisfaction estimation in TOD systems are highly skewed towards dialogues for which the user is satisfied. The effect of having a more balanced set of satisfaction labels on performance is unknown. However, balancing the data with more dissatisfactory dialogue samples requires further data collection and human annotation, which is costly and time-consuming. In this work, we leverage large language models (LLMs) and unlock their ability to generate satisfaction-aware counterfactual dialogues to augment the set of original dialogues of a test collection. We gather human annotations to ensure the reliability of the generated samples. We evaluate two open-source LLMs as user satisfaction estimators on our augmented collection against state-of-the-art fine-tuned models. Our experiments show that when used as few-shot user satisfaction estimators, open-source LLMs show higher robustness to the increase in the number of dissatisfaction labels in the test collection than the fine-tuned state-of-the-art models. Our results shed light on the need for data augmentation approaches for user satisfaction estimation in TOD systems. We release our aligned counterfactual dialogues, which are curated by human annotation, to facilitate further research on this topic.


Asking Multimodal Clarifying Questions in Mixed-Initiative Conversational Search

arXiv.org Artificial Intelligence

In mixed-initiative conversational search systems, clarifying questions are used to help users who struggle to express their intentions in a single query. These questions aim to uncover user's information needs and resolve query ambiguities. We hypothesize that in scenarios where multimodal information is pertinent, the clarification process can be improved by using non-textual information. Therefore, we propose to add images to clarifying questions and formulate the novel task of asking multimodal clarifying questions in open-domain, mixed-initiative conversational search systems. To facilitate research into this task, we collect a dataset named Melon that contains over 4k multimodal clarifying questions, enriched with over 14k images. We also propose a multimodal query clarification model named Marto and adopt a prompt-based, generative fine-tuning strategy to perform the training of different stages with different prompts. Several analyses are conducted to understand the importance of multimodal contents during the query clarification phase. Experimental results indicate that the addition of images leads to significant improvements of up to 90% in retrieval performance when selecting the relevant images. Extensive analyses are also performed to show the superiority of Marto compared with discriminative baselines in terms of effectiveness and efficiency.


TREC iKAT 2023: The Interactive Knowledge Assistance Track Overview

arXiv.org Artificial Intelligence

Conversational Information Seeking stands as a pivotal research area with significant contributions from previous works. The TREC Interactive Knowledge Assistance Track (iKAT) builds on the foundational work of the TREC Conversational Assistance Track (CAsT). However, iKAT distinctively emphasizes the creation and research of conversational search agents that adapt responses based on user's prior interactions and present context. The challenge lies in enabling Conversational Search Agents (CSA) to incorporate this personalized context to efficiency and effectively guide users through the relevant information to them. iKAT also emphasizes decisional search tasks, where users sift through data and information to weigh up options in order to reach a conclusion or perform an action. These tasks, prevalent in everyday information-seeking decisions -- be it related to travel, health, or shopping -- often revolve around a subset of high-level information operators where queries or questions about the information space include: finding options, comparing options, identifying the pros and cons of options, etc. Given the different personas and their information need (expressed through the sequence of questions), diverse conversation trajectories will arise -- because the answers to these similar queries will be very different. In this paper, we report on the first year of TREC iKAT, describing the task, topics, data collection, and evaluation framework. We further review the submissions and summarize the findings.


Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions

arXiv.org Artificial Intelligence

Conversational question-answering (CQA) systems aim to create interactive search systems that effectively retrieve information by interacting with users. To replicate human-to-human conversations, existing work uses human annotators to play the roles of the questioner (student) and the answerer (teacher). Despite its effectiveness, challenges exist as human annotation is time-consuming, inconsistent, and not scalable. To address this issue and investigate the applicability of large language models (LLMs) in CQA simulation, we propose a simulation framework that employs zero-shot learner LLMs for simulating teacher-student interactions. Our framework involves two LLMs interacting on a specific topic, with the first LLM acting as a student, generating questions to explore a given search topic. The second LLM plays the role of a teacher by answering questions and is equipped with additional information, including a text on the given topic. We implement both the student and teacher by zero-shot prompting the GPT-4 model. To assess the effectiveness of LLMs in simulating CQA interactions and understand the disparities between LLM- and human-generated conversations, we evaluate the simulated data from various perspectives. We begin by evaluating the teacher's performance through both automatic and human assessment. Next, we evaluate the performance of the student, analyzing and comparing the disparities between questions generated by the LLM and those generated by humans. Furthermore, we conduct extensive analyses to thoroughly examine the LLM performance by benchmarking state-of-the-art reading comprehension models on both datasets. Our results reveal that the teacher LLM generates lengthier answers that tend to be more accurate and complete. The student LLM generates more diverse questions, covering more aspects of a given topic.


Query Performance Prediction: From Ad-hoc to Conversational Search

arXiv.org Artificial Intelligence

Query performance prediction (QPP) is a core task in information retrieval. The QPP task is to predict the retrieval quality of a search system for a query without relevance judgments. Research has shown the effectiveness and usefulness of QPP for ad-hoc search. Recent years have witnessed considerable progress in conversational search (CS). Effective QPP could help a CS system to decide an appropriate action to be taken at the next turn. Despite its potential, QPP for CS has been little studied. We address this research gap by reproducing and studying the effectiveness of existing QPP methods in the context of CS. While the task of passage retrieval remains the same in the two settings, a user query in CS depends on the conversational history, introducing novel QPP challenges. In particular, we seek to explore to what extent findings from QPP methods for ad-hoc search generalize to three CS settings: (i) estimating the retrieval quality of different query rewriting-based retrieval methods, (ii) estimating the retrieval quality of a conversational dense retrieval method, and (iii) estimating the retrieval quality for top ranks vs. deeper-ranked lists. Our findings can be summarized as follows: (i) supervised QPP methods distinctly outperform unsupervised counterparts only when a large-scale training set is available; (ii) point-wise supervised QPP methods outperform their list-wise counterparts in most cases; and (iii) retrieval score-based unsupervised QPP methods show high effectiveness in assessing the conversational dense retrieval method, ConvDR.