Goto

Collaborating Authors

 Alex Schwing


Constraints Based Convex Belief Propagation

Neural Information Processing Systems

Inference in Markov random fields subject to consistency structure is a fundamental problem that arises in many real-life applications. In order to enforce consistency, classical approaches utilize consistency potentials or encode constraints over feasible instances. Unfortunately this comes at the price of a tremendous computational burden. In this paper we suggest to tackle consistency by incorporating constraints on beliefs. This permits derivation of a closed-form message-passing algorithm which we refer to as the Constraints Based Convex Belief Propagation (CBCBP). Experiments show that CBCBP outperforms the conventional consistency potential based approach, while being at least an order of magnitude faster.


Learning Deep Parsimonious Representations

Neural Information Processing Systems

In this paper we aim at facilitating generalization for deep networks while supporting interpretability of the learned representations. Towards this goal, we propose a clustering based regularization that encourages parsimonious representations. Our k-means style objective is easy to optimize and flexible, supporting various forms of clustering, such as sample clustering, spatial clustering, as well as co-clustering. We demonstrate the effectiveness of our approach on the tasks of unsupervised learning, classification, fine grained categorization, and zero-shot learning.