Learning Deep Parsimonious Representations

Renjie Liao, Alex Schwing, Richard Zemel, Raquel Urtasun

Neural Information Processing Systems 

In this paper we aim at facilitating generalization for deep networks while supporting interpretability of the learned representations. Towards this goal, we propose a clustering based regularization that encourages parsimonious representations. Our k-means style objective is easy to optimize and flexible, supporting various forms of clustering, such as sample clustering, spatial clustering, as well as co-clustering. We demonstrate the effectiveness of our approach on the tasks of unsupervised learning, classification, fine grained categorization, and zero-shot learning.