Albert, Michael
Learning in Online Principal-Agent Interactions: The Power of Menus
Han, Minbiao, Albert, Michael, Xu, Haifeng
We study a ubiquitous learning challenge in online principal-agent problems during which the principal learns the agent's private information from the agent's revealed preferences in historical interactions. This paradigm includes important special cases such as pricing and contract design, which have been widely studied in recent literature. However, existing work considers the case where the principal can only choose a single strategy at every round to interact with the agent and then observe the agent's revealed preference through their actions. In this paper, we extend this line of study to allow the principal to offer a menu of strategies to the agent and learn additionally from observing the agent's selection from the menu. We provide a thorough investigation of several online principal-agent problem settings and characterize their sample complexities, accompanied by the corresponding algorithms we have developed. We instantiate this paradigm to several important design problems $-$ including Stackelberg (security) games, contract design, and information design. Finally, we also explore the connection between our findings and existing results about online learning in Stackelberg games, and we offer a solution that can overcome a key hard instance of Peng et al. (2019).
Traffic Optimization for a Mixture of Self-Interested and Compliant Agents
Sharon, Guni (University of Texas at Austin) | Albert, Michael (Duke University) | Rambha, Tarun (Cornell University) | Boyles, Stephen (University of Texas at Austin) | Stone, Peter (University of Texas at Austin)
This paper focuses on two commonly used path assignment policies for agents traversing a congested network: self-interested routing, and system-optimum routing. In the self-interested routing policy each agent selects a path that optimizes its own utility, while in the system-optimum routing, agents are assigned paths with the goal of maximizing system performance. This paper considers a scenario where a centralized network manager wishes to optimize utilities over all agents, i.e., implement a system-optimum routing policy. In many real-life scenarios, however, the system manager is unable to influence the route assignment of all agents due to limited influence on route choice decisions. Motivated by such scenarios, a computationally tractable method is presented that computes the minimal amount of agents that the system manager needs to influence (compliant agents) in order to achieve system optimal performance. Moreover, this methodology can also determine whether a given set of compliant agents is sufficient to achieve system optimum and compute the optimal route assignment for the compliant agents to do so. Experimental results are presented showing that in several large-scale, realistic traffic networks optimal flow can be achieved with as low as 13% of the agent being compliant and up to 54%.
Complexity of Scheduling Charging in the Smart Grid
de Weerdt, Mathijs, Albert, Michael, Conitzer, Vincent
In the smart grid, the intent is to use flexibility in demand, both to balance demand and supply as well as to resolve potential congestion. A first prominent example of such flexible demand is the charging of electric vehicles, which do not necessarily need to be charged as soon as they are plugged in. The problem of optimally scheduling the charging demand of electric vehicles within the constraints of the electricity infrastructure is called the charge scheduling problem. The models of the charging speed, horizon, and charging demand determine the computational complexity of the charge scheduling problem. For about 20 variants, we show, using a dynamic programming approach, that the problem is either in P or weakly NP-hard. We also show that about 10 variants of the problem are strongly NP-hard, presenting a potentially significant obstacle to their use in practical situations of scale.
Automated Design of Robust Mechanisms
Albert, Michael (Duke University) | Conitzer, Vincent (Duke University) | Stone, Peter (University of Texas at Austin)
We introduce a new class of mechanisms, robust mechanisms, that is an intermediary between ex-post mechanisms and Bayesian mechanisms. This new class of mechanisms allows the mechanism designer to incorporate imprecise estimates of the distribution over bidder valuations in a way that provides strong guarantees that the mechanism will perform at least as well as ex-post mechanisms, while in many cases performing better. We further extend this class to mechanisms that are with high probability incentive compatible and individually rational, ε-robust mechanisms. Using techniques from automated mechanism design and robust optimization, we provide an algorithm polynomial in the number of bidder types to design robust and ε-robust mechanisms. We show experimentally that this new class of mechanisms can significantly outperform traditional mechanism design techniques when the mechanism designer has an estimate of the distribution and the bidder’s valuation is correlated with an externally verifiable signal.
Maximizing Revenue with Limited Correlation: The Cost of Ex-Post Incentive Compatibility
Albert, Michael (University of Texas at Austin) | Conitzer, Vincent (Duke University) | Lopomo, Giuseppe (Duke University)
In a landmark paper in the mechanism design literature, Cremer and McLean (1985) (CM for short) show that when a bidder’s valuation is correlated with an external signal, a monopolistic seller is able to extract the full social surplus as revenue. In the original paper and subsequent literature, the focus has been on ex-post incentive compatible (or IC) mechanisms, where truth telling is an ex-post Nash equilibrium. In this paper, we explore the implications of Bayesian versus ex-post IC in a correlated valuation setting. We generalize the full extraction result to settings that do not satisfy the assumptions of CM. In particular, we give necessary and sufficient conditions for full extraction that strictly relax the original conditions given in CM. These more general conditions characterize the situations under which requiring ex-post IC leads to a decrease in expected revenue relative to Bayesian IC. We also demonstrate that the expected revenue from the optimal ex-post IC mechanism guarantees at most a (|Θ| + 1)/4 approximation to that of a Bayesian IC mechanism, where |Θ| is the number of bidder types. Finally, using techniques from automated mechanism design, we show that, for randomly generated distributions, the average expected revenue achieved by Bayesian IC mechanisms is significantly larger than that for ex-post IC mechanisms.
Assessing the Robustness of Cremer-McLean with Automated Mechanism Design
Albert, Michael (The Ohio State University) | Conitzer, Vincent (Duke University) | Lopomo, Giuseppe (Duke University)
In a classic result in the mechanism design literature, Cremerand McLean (1985) show that if buyers’ valuations are sufficiently correlated, a mechanism exists that allows the seller to extract the full surplus from efficient allocation as revenue. This result is commonly seen as “too good to be true” (in practice), casting doubt on its modeling assumptions. In this paper, we use an automated mechanism design approach to assess how sensitive the Cremer-McLean result is to relaxing its main technical assumption. That assumption implies that each valuation that a bidder can have results in a unique conditional distribution over the external signal(s). We relax this, allowing multiple valuations to be consistent with the same distribution over the external signal(s). Using similar insights to Cremer-McLean, we provide a highly efficient algorithm for computing the optimal revenue in this more general case. Using this algorithm, we observe that indeed, as the number of valuations consistent with a distribution grows, the optimal revenue quickly drops to that of a reserve-price mechanism. Thus, automated mechanism design allows us to gain insight into the precise sense in which Cremer-McLean is “too good to be true.”