Goto

Collaborating Authors

 Alazraki, Lisa


How can representation dimension dominate structurally pruned LLMs?

arXiv.org Artificial Intelligence

Pruning assumes a subnetwork exists in the original deep neural network, which can achieve comparative model performance with less computation than the original. However, it is unclear how the model performance varies with the different subnetwork extractions. In this paper, we choose the representation dimension (or embedding dimension, model dimension, the dimension of the residual stream in the relevant literature) as the entry point to this issue. We investigate the linear transformations in the LLM transformer blocks and consider a specific structured pruning approach, SliceGPT, to extract the subnetworks of different representation dimensions. We mechanistically analyse the activation flow during the model forward passes, and find the representation dimension dominates the linear transformations, model predictions, and, finally, the model performance. Explicit analytical relations are given to calculate the pruned model performance (perplexity and accuracy) without actual evaluation, and are empirically validated with Llama-3-8B-Instruct and Phi-3-mini-4k-Instruct.


LLMs can implicitly learn from mistakes in-context

arXiv.org Artificial Intelligence

Learning from mistakes is a fundamental feature of human intelligence. Previous work has shown that Large Language Models (LLMs) can also learn from incorrect answers when provided with a comprehensive rationale detailing why an answer is wrong or how to correct it. In this work, we examine whether LLMs can learn from mistakes in mathematical reasoning tasks when these explanations are not provided. We investigate if LLMs are able to implicitly infer such rationales simply from observing both incorrect and correct answers. Surprisingly, we find that LLMs perform better, on average, when rationales are eliminated from the context and incorrect answers are simply shown alongside correct ones. This approach also substantially outperforms chain-of-thought prompting in our evaluations. We show that these results are consistent across LLMs of different sizes and varying reasoning abilities. Further, we carry out an in-depth analysis, and show that prompting with both wrong and correct answers leads to greater performance and better generalisation than introducing additional, more diverse question-answer pairs into the context. Finally, we show that new rationales generated by models that have only observed incorrect and correct answers are scored equally as highly by humans as those produced with the aid of exemplar rationales. Our results demonstrate that LLMs are indeed capable of in-context implicit learning.


Meta-Reasoning Improves Tool Use in Large Language Models

arXiv.org Artificial Intelligence

External tools help large language models (LLMs) succeed at tasks where they would otherwise typically fail. In existing frameworks, LLMs learn tool use either by in-context demonstrations or via full model fine-tuning on annotated data. As these approaches do not easily scale, a recent trend is to abandon them in favor of lightweight, parameter-efficient tuning paradigms. These methods allow quickly alternating between the frozen LLM and its specialised fine-tuned version, by switching on or off a handful of additional custom parameters. Hence, we postulate that the generalization ability of the frozen model can be leveraged to improve tool selection. We present Tool selECTion via meta-reasONing (TECTON), a two-phase system that first reasons over a task using a custom fine-tuned LM head and outputs candidate tools. Then, with the custom head disabled, it meta-reasons (i.e., it reasons over the previous reasoning process) to make a final choice. We show that TECTON results in substantial gains - both in-distribution and out-of-distribution - on a range of math reasoning datasets.


A Multilingual Virtual Guide for Self-Attachment Technique

arXiv.org Artificial Intelligence

In this work, we propose a computational framework that leverages existing out-of-language data to create a conversational agent for the delivery of Self-Attachment Technique (SAT) in Mandarin. Our framework does not require large-scale human translations, yet it achieves a comparable performance whilst also maintaining safety and reliability. We propose two different methods of augmenting available response data through empathetic rewriting. We evaluate our chatbot against a previous, English-only SAT chatbot through non-clinical human trials (N=42), each lasting five days, and quantitatively show that we are able to attain a comparable level of performance to the English SAT chatbot. We provide qualitative analysis on the limitations of our study and suggestions with the aim of guiding future improvements.


From Words and Exercises to Wellness: Farsi Chatbot for Self-Attachment Technique

arXiv.org Artificial Intelligence

In the wake of the post-pandemic era, marked by social isolation and surging rates of depression and anxiety, conversational agents based on digital psychotherapy can play an influential role compared to traditional therapy sessions. In this work, we develop a voice-capable chatbot in Farsi to guide users through Self-Attachment (SAT), a novel, self-administered, holistic psychological technique based on attachment theory. Our chatbot uses a dynamic array of rule-based and classification-based modules to comprehend user input throughout the conversation and navigates a dialogue flowchart accordingly, recommending appropriate SAT exercises that depend on the user's emotional and mental state. In particular, we collect a dataset of over 6,000 utterances and develop a novel sentiment-analysis module that classifies user sentiment into 12 classes, with accuracy above 92%. To keep the conversation novel and engaging, the chatbot's responses are retrieved from a large dataset of utterances created with the aid of Farsi GPT-2 and a reinforcement learning approach, thus requiring minimal human annotation. Our chatbot also offers a question-answering module, called SAT Teacher, to answer users' questions about the principles of Self-Attachment. Finally, we design a cross-platform application as the bot's user interface. We evaluate our platform in a ten-day human study with N=52 volunteers from the non-clinical population, who have had over 2,000 dialogues in total with the chatbot. The results indicate that the platform was engaging to most users (75%), 72% felt better after the interactions, and 74% were satisfied with the SAT Teacher's performance.


An Empathetic AI Coach for Self-Attachment Therapy

arXiv.org Artificial Intelligence

In this work, we present a new dataset and a computational strategy for a digital coach that aims to guide users in practicing the protocols of self-attachment therapy. Our framework augments a rule-based conversational agent with a deep-learning classifier for identifying the underlying emotion in a user's text response, as well as a deep-learning assisted retrieval method for producing novel, fluent and empathetic utterances. We also craft a set of human-like personas that users can choose to interact with. Our goal is to achieve a high level of engagement during virtual therapy sessions. We evaluate the effectiveness of our framework in a non-clinical trial with N=16 participants, all of whom have had at least four interactions with the agent over the course of five days. We find that our platform is consistently rated higher for empathy, user engagement and usefulness than the simple rule-based framework. Finally, we provide guidelines to further improve the design and performance of the application, in accordance with the feedback received.