Goto

Collaborating Authors

 Alanazi, Yasir


Robust Errant Beam Prognostics with Conditional Modeling for Particle Accelerators

arXiv.org Artificial Intelligence

Particle accelerators are complex and comprise thousands of components, with many pieces of equipment running at their peak power. Consequently, particle accelerators can fault and abort operations for numerous reasons. These faults impact the availability of particle accelerators during scheduled run-time and hamper the efficiency and the overall science output. To avoid these faults, we apply anomaly detection techniques to predict any unusual behavior and perform preemptive actions to improve the total availability of particle accelerators. Semi-supervised Machine Learning (ML) based anomaly detection approaches such as autoencoders and variational autoencoders are often used for such tasks. However, supervised ML techniques such as Siamese Neural Network (SNN) models can outperform unsupervised or semi-supervised approaches for anomaly detection by leveraging the label information. One of the challenges specific to anomaly detection for particle accelerators is the data's variability due to system configuration changes. To address this challenge, we employ Conditional Siamese Neural Network (CSNN) models and Conditional Variational Auto Encoder (CVAE) models to predict errant beam pulses at the Spallation Neutron Source (SNS) under different system configuration conditions and compare their performance. We demonstrate that CSNN outperforms CVAE in our application.


Multi-module based CVAE to predict HVCM faults in the SNS accelerator

arXiv.org Artificial Intelligence

We present a multi-module framework based on Conditional Variational Autoencoder (CVAE) to detect anomalies in the power signals coming from multiple High Voltage Converter Modulators (HVCMs). We condition the model with the specific modulator type to capture different representations of the normal waveforms and to improve the sensitivity of the model to identify a specific type of fault when we have limited samples for a given module type. We studied several neural network (NN) architectures for our CVAE model and evaluated the model performance by looking at their loss landscape for stability and generalization. Our results for the Spallation Neutron Source (SNS) experimental data show that the trained model generalizes well to detecting multiple fault types for several HVCM module types. The results of this study can be used to improve the HVCM reliability and overall SNS uptime