Goto

Collaborating Authors

 Alaa, Ahmed


Medical Large Language Model Benchmarks Should Prioritize Construct Validity

arXiv.org Artificial Intelligence

Medical large language models (LLMs) research often makes bold claims, from encoding clinical knowledge to reasoning like a physician. These claims are usually backed by evaluation on competitive benchmarks; a tradition inherited from mainstream machine learning. But how do we separate real progress from a leaderboard flex? Medical LLM benchmarks, much like those in other fields, are arbitrarily constructed using medical licensing exam questions. For these benchmarks to truly measure progress, they must accurately capture the real-world tasks they aim to represent. In this position paper, we argue that medical LLM benchmarks should (and indeed can) be empirically evaluated for their construct validity. In the psychological testing literature, "construct validity" refers to the ability of a test to measure an underlying "construct", that is the actual conceptual target of evaluation. By drawing an analogy between LLM benchmarks and psychological tests, we explain how frameworks from this field can provide empirical foundations for validating benchmarks. To put these ideas into practice, we use real-world clinical data in proof-of-concept experiments to evaluate popular medical LLM benchmarks and report significant gaps in their construct validity. Finally, we outline a vision for a new ecosystem of medical LLM evaluation centered around the creation of valid benchmarks.


Norm Growth and Stability Challenges in Localized Sequential Knowledge Editing

arXiv.org Artificial Intelligence

This study investigates the impact of localized updates to large language models (LLMs), specifically in the context of knowledge editing - a task aimed at incorporating or modifying specific facts without altering broader model capabilities. We first show that across different post-training interventions like continuous pre-training, full fine-tuning and LORA-based fine-tuning, the Frobenius norm of the updated matrices always increases. This increasing norm is especially detrimental for localized knowledge editing, where only a subset of matrices are updated in a model . We reveal a consistent phenomenon across various editing techniques, including fine-tuning, hypernetwork-based approaches, and locate-and-edit methods: the norm of the updated matrix invariably increases with successive updates. Such growth disrupts model balance, particularly when isolated matrices are updated while the rest of the model remains static, leading to potential instability and degradation of downstream performance. Upon deeper investigations of the intermediate activation vectors, we find that the norm of internal activations decreases and is accompanied by shifts in the subspaces occupied by these activations, which shows that these activation vectors now occupy completely different regions in the representation space compared to the unedited model. With our paper, we highlight the technical challenges with continuous and localized sequential knowledge editing and their implications for maintaining model stability and utility.


Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores

arXiv.org Machine Learning

Standard conformal prediction offers a marginal guarantee on coverage, but for prediction sets to be truly useful, they should ideally ensure coverage conditional on each test point. Unfortunately, it is impossible to achieve exact, distribution-free conditional coverage in finite samples. In this work, we propose an alternative conformal prediction algorithm that targets coverage where it matters most--in instances where a classifier is overconfident in its incorrect predictions. We start by dissecting miscoverage events in marginally-valid conformal prediction, and show that miscoverage rates vary based on the classifier's confidence and its deviation from the Bayes optimal classifier. Motivated by this insight, we develop a variant of conformal prediction that targets coverage conditional on a reduced set of two variables: the classifier's confidence in a prediction and a nonparametric trust score that measures its deviation from the Bayes classifier. Empirical evaluation on multiple image datasets shows that our method generally improves conditional coverage properties compared to standard conformal prediction, including class-conditional coverage, coverage over arbitrary subgroups, and coverage over demographic groups.


Generalized Venn and Venn-Abers Calibration with Applications in Conformal Prediction

arXiv.org Machine Learning

Ensuring model calibration is critical for reliable predictions, yet popular distribution-free methods, such as histogram binning and isotonic regression, provide only asymptotic guarantees. We introduce a unified framework for Venn and Venn-Abers calibration, generalizing Vovk's binary classification approach to arbitrary prediction tasks and loss functions. Venn calibration leverages binning calibrators to construct prediction sets that contain at least one marginally perfectly calibrated point prediction in finite samples, capturing epistemic uncertainty in the calibration process. The width of these sets shrinks asymptotically to zero, converging to a conditionally calibrated point prediction. Furthermore, we propose Venn multicalibration, a novel methodology for finite-sample calibration across subpopulations. For quantile loss, group-conditional and multicalibrated conformal prediction arise as special cases of Venn multicalibration, and Venn calibration produces novel conformal prediction intervals that achieve quantile-conditional coverage. As a separate contribution, we extend distribution-free conditional calibration guarantees of histogram binning and isotonic calibration to general losses.


Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have attained human-level accuracy on medical question-answer (QA) benchmarks. However, their limitations in navigating open-ended clinical scenarios have recently been shown, raising concerns about the robustness and generalizability of LLM reasoning across diverse, real-world medical tasks. To probe potential LLM failure modes in clinical problem-solving, we present the medical abstraction and reasoning corpus (M-ARC). M-ARC assesses clinical reasoning through scenarios designed to exploit the Einstellung effect -- the fixation of thought arising from prior experience, targeting LLM inductive biases toward inflexible pattern matching from their training data rather than engaging in flexible reasoning. We find that LLMs, including current state-of-the-art o1 and Gemini models, perform poorly compared to physicians on M-ARC, often demonstrating lack of commonsense medical reasoning and a propensity to hallucinate. In addition, uncertainty estimation analyses indicate that LLMs exhibit overconfidence in their answers, despite their limited accuracy. The failure modes revealed by M-ARC in LLM medical reasoning underscore the need to exercise caution when deploying these models in clinical settings.


Lifelong Sequential Knowledge Editing without Model Degradation

arXiv.org Artificial Intelligence

Prior work in parameter-modifying knowledge editing has shown that large-scale sequential editing leads to significant model degradation. In this paper, we study the reasons behind this and scale sequential knowledge editing to 10,000 sequential edits, while maintaining the downstream performance of the original model. We first show that locate-then-edit knowledge editing methods lead to overfitting on the edited facts. We also show that continuous knowledge editing using these methods leads to disproportionate growth in the norm of the edited matrix. We then provide a crucial insight into the inner workings of locate-then-edit methods. We show that norm-growth is a hidden trick employed by these methods that gives larger importance to the output activations produced from the edited layers. With this "importance hacking", the edited layers provide a much larger contributions to the model's output. To mitigate these issues, we present ENCORE - Early stopping and Norm-Constrained Robust knowledge Editing. ENCORE controls for overfitting and the disproportionate norm-growth to enable long-term sequential editing, where we are able to perform up to 10,000 sequential edits without loss of downstream performance. ENCORE is also 61% faster than MEMIT and 64% faster than AlphaEdit on Llama3-8B.


BioAgents: Democratizing Bioinformatics Analysis with Multi-Agent Systems

arXiv.org Artificial Intelligence

Creating end-to-end bioinformatics workflows requires diverse domain expertise, which poses challenges for both junior and senior researchers as it demands a deep understanding of both genomics concepts and computational techniques. While large language models (LLMs) provide some assistance, they often fall short in providing the nuanced guidance needed to execute complex bioinformatics tasks, and require expensive computing resources to achieve high performance. We thus propose a multi-agent system built on small language models, fine-tuned on bioinformatics data, and enhanced with retrieval augmented generation (RAG). Our system, BioAgents, enables local operation and personalization using proprietary data. We observe performance comparable to human experts on conceptual genomics tasks, and suggest next steps to enhance code generation capabilities. Large language models (LLMs) have been applied to various domain-specific contexts, including scientific discovery in medicine [45, 49, 56], chemistry [6, 7], and biotechnology [31]. Recent advances in LLMs have spurred their use in bioinformatics [13], a field encompassing data-intensive tasks such as genome sequencing, protein structure prediction, and pathway analysis. One of the most significant applications has been AlphaFold3, which uses transformer architecture with triangular attention to predict a protein's three-dimensional (3-D) structure from amino acid sequences [2].


Mean-field Chaos Diffusion Models

arXiv.org Artificial Intelligence

In this paper, we introduce a new class of score-based generative models (SGMs) designed to handle high-cardinality data distributions by leveraging concepts from mean-field theory. We present mean-field chaos diffusion models (MF-CDMs), which address the curse of dimensionality inherent in high-cardinality data by utilizing the propagation of chaos property of interacting particles. By treating high-cardinality data as a large stochastic system of interacting particles, we develop a novel score-matching method for infinite-dimensional chaotic particle systems and propose an approximation scheme that employs a subdivision strategy for efficient training. Our theoretical and empirical results demonstrate the scalability and effectiveness of MF-CDMs for managing large high-cardinality data structures, such as 3D point clouds.


Prediction-powered Generalization of Causal Inferences

arXiv.org Machine Learning

Causal inferences from a randomized controlled trial (RCT) may not pertain to a target population where some effect modifiers have a different distribution. Prior work studies generalizing the results of a trial to a target population with no outcome but covariate data available. We show how the limited size of trials makes generalization a statistically infeasible task, as it requires estimating complex nuisance functions. We develop generalization algorithms that supplement the trial data with a prediction model learned from an additional observational study (OS), without making any assumptions on the OS. We theoretically and empirically show that our methods facilitate better generalization when the OS is high-quality, and remain robust when it is not, and e.g., have unmeasured confounding.


Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding

arXiv.org Artificial Intelligence

Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions to assist in diagnostic and treatment tasks. However, VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information. This challenge is particularly pronounced in the medical domain, where we do not only require VLM outputs to be accurate in single interactions but also to be consistent with clinical reasoning and diagnostic pathways throughout multi-turn conversations. For this purpose, we propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge. These representations are utilized to (i) generate GPT-4-guided visual instruction tuning data at scale, simulating clinician-VLM conversations with demonstrations of clinical reasoning, and (ii) create an automatic reward function that evaluates the clinical validity of VLM generations throughout clinician-VLM interactions. Our algorithm eliminates the need for human involvement in training data generation or reward model construction, reducing costs compared to standard reinforcement learning with human feedback (RLHF). We apply our alignment algorithm to develop Dr-LLaVA, a conversational VLM finetuned for analyzing bone marrow pathology slides, demonstrating strong performance in multi-turn medical conversations.