Goto

Collaborating Authors

 Aizawa, Kiyoharu


Harnessing PDF Data for Improving Japanese Large Multimodal Models

arXiv.org Artificial Intelligence

Large Multimodal Models (LMMs) have demonstrated strong performance in English, but their effectiveness in Japanese remains limited due to the lack of high-quality training data. Current Japanese LMMs often rely on translated English datasets, restricting their ability to capture Japan-specific cultural knowledge. To address this, we explore the potential of Japanese PDF data as a training resource, an area that remains largely underutilized. We introduce a fully automated pipeline that leverages pretrained models to extract image-text pairs from PDFs through layout analysis, OCR, and vision-language pairing, removing the need for manual annotation. Additionally, we construct instruction data from extracted image-text pairs to enrich the training data. To evaluate the effectiveness of PDF-derived data, we train Japanese LMMs and assess their performance on the Japanese LMM Benchmark. Our results demonstrate substantial improvements, with performance gains ranging from 3.9% to 13.8% on Heron-Bench. Further analysis highlights the impact of PDF-derived data on various factors, such as model size and language models, reinforcing its value as a multimodal resource for Japanese LMMs. We plan to make the source code and data publicly available upon acceptance.


JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation

arXiv.org Artificial Intelligence

Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.


Unsolvable Problem Detection: Evaluating Trustworthiness of Vision Language Models

arXiv.org Artificial Intelligence

This paper introduces a novel and significant challenge for Vision Language Models (VLMs), termed Unsolvable Problem Detection (UPD). UPD examines the VLM's ability to withhold answers when faced with unsolvable problems in the context of Visual Question Answering (VQA) tasks. UPD encompasses three distinct settings: Absent Answer Detection (AAD), Incompatible Answer Set Detection (IASD), and Incompatible Visual Question Detection (IVQD). To deeply investigate the UPD problem, extensive experiments indicate that most VLMs, including GPT-4V and LLaVA-Next-34B, struggle with our benchmarks to varying extents, highlighting significant room for the improvements. To address UPD, we explore both training-free and training-based solutions, offering new insights into their effectiveness and limitations. We hope our insights, together with future efforts within the proposed UPD settings, will enhance the broader understanding and development of more practical and reliable VLMs.


Joint Optimization Framework for Learning with Noisy Labels

arXiv.org Machine Learning

Deep neural networks (DNNs) trained on large-scale datasets have exhibited significant performance in image classification. Many large-scale datasets are collected from websites, however they tend to contain inaccurate labels that are termed as noisy labels. Training on such noisy labeled datasets causes performance degradation because DNNs easily overfit to noisy labels. To overcome this problem, we propose a joint optimization framework of learning DNN parameters and estimating true labels. Our framework can correct labels during training by alternating update of network parameters and labels. We conduct experiments on the noisy CIFAR-10 datasets and the Clothing1M dataset. The results indicate that our approach significantly outperforms other state-of-the-art methods.