Ahmed, Amr
Linear Transformer Topological Masking with Graph Random Features
Reid, Isaac, Dubey, Kumar Avinava, Jain, Deepali, Whitney, Will, Ahmed, Amr, Ainslie, Joshua, Bewley, Alex, Jacob, Mithun, Mehta, Aranyak, Rendleman, David, Schenck, Connor, Turner, Richard E., Wagner, René, Weller, Adrian, Choromanski, Krzysztof
When training transformers on graph-structured data, incorporating information about the underlying topology is crucial for good performance. Topological masking, a type of relative position encoding, achieves this by upweighting or downweighting attention depending on the relationship between the query and keys in a graph. In this paper, we propose to parameterise topological masks as a learnable function of a weighted adjacency matrix -- a novel, flexible approach which incorporates a strong structural inductive bias. By approximating this mask with graph random features (for which we prove the first known concentration bounds), we show how this can be made fully compatible with linear attention, preserving $\mathcal{O}(N)$ time and space complexity with respect to the number of input tokens. The fastest previous alternative was $\mathcal{O}(N \log N)$ and only suitable for specific graphs. Our efficient masking algorithms provide strong performance gains for tasks on image and point cloud data, including with $>30$k nodes.
Incremental Extractive Opinion Summarization Using Cover Trees
Chowdhury, Somnath Basu Roy, Monath, Nicholas, Dubey, Avinava, Zaheer, Manzil, McCallum, Andrew, Ahmed, Amr, Chaturvedi, Snigdha
Extractive opinion summarization involves automatically producing a summary of text about an entity (e.g., a product's reviews) by extracting representative sentences that capture prevalent opinions in the review set. Typically, in online marketplaces user reviews accrue over time, and opinion summaries need to be updated periodically to provide customers with up-to-date information. In this work, we study the task of extractive opinion summarization in an incremental setting, where the underlying review set evolves over time. Many of the state-of-the-art extractive opinion summarization approaches are centrality-based, such as CentroidRank. CentroidRank performs extractive summarization by selecting a subset of review sentences closest to the centroid in the representation space as the summary. However, these methods are not capable of operating efficiently in an incremental setting, where reviews arrive one at a time. In this paper, we present an efficient algorithm for accurately computing the CentroidRank summaries in an incremental setting. Our approach, CoverSumm, relies on indexing review representations in a cover tree and maintaining a reservoir of candidate summary review sentences. CoverSumm's efficacy is supported by a theoretical and empirical analysis of running time. Empirically, on a diverse collection of data (both real and synthetically created to illustrate scaling considerations), we demonstrate that CoverSumm is up to 25x faster than baseline methods, and capable of adapting to nuanced changes in data distribution. We also conduct human evaluations of the generated summaries and find that CoverSumm is capable of producing informative summaries consistent with the underlying review set.
Robust Concept Erasure via Kernelized Rate-Distortion Maximization
Chowdhury, Somnath Basu Roy, Monath, Nicholas, Dubey, Avinava, Ahmed, Amr, Chaturvedi, Snigdha
Distributed representations provide a vector space that captures meaningful relationships between data instances. The distributed nature of these representations, however, entangles together multiple attributes or concepts of data instances (e.g., the topic or sentiment of a text, characteristics of the author (age, gender, etc), etc). Recent work has proposed the task of concept erasure, in which rather than making a concept predictable, the goal is to remove an attribute from distributed representations while retaining other information from the original representation space as much as possible. In this paper, we propose a new distance metric learning-based objective, the Kernelized Rate-Distortion Maximizer (KRaM), for performing concept erasure. KRaM fits a transformation of representations to match a specified distance measure (defined by a labeled concept to erase) using a modified rate-distortion function. Specifically, KRaM's objective function aims to make instances with similar concept labels dissimilar in the learned representation space while retaining other information. We find that optimizing KRaM effectively erases various types of concepts: categorical, continuous, and vector-valued variables from data representations across diverse domains. We also provide a theoretical analysis of several properties of KRaM's objective. To assess the quality of the learned representations, we propose an alignment score to evaluate their similarity with the original representation space. Additionally, we conduct experiments to showcase KRaM's efficacy in various settings, from erasing binary gender variables in word embeddings to vector-valued variables in GPT-3 representations.
Unsupervised Opinion Summarization Using Approximate Geodesics
Chowdhury, Somnath Basu Roy, Monath, Nicholas, Dubey, Avinava, Ahmed, Amr, Chaturvedi, Snigdha
Opinion summarization is the task of creating summaries capturing popular opinions from user reviews. In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm involves an encoder-decoder based representation learning model, that generates representations of text as a distribution over latent semantic units. GeoSumm generates these representations by performing dictionary learning over pre-trained text representations at multiple decoder layers. We then use these representations to quantify the relevance of review sentences using a novel approximate geodesic distance based scoring mechanism. We use the relevance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves state-of-the-art performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of {\X} across different domains.
Enhancing Group Fairness in Online Settings Using Oblique Decision Forests
Chowdhury, Somnath Basu Roy, Monath, Nicholas, Beirami, Ahmad, Kidambi, Rahul, Dubey, Avinava, Ahmed, Amr, Chaturvedi, Snigdha
Fairness, especially group fairness, is an important consideration in the context of machine learning systems. The most commonly adopted group fairness-enhancing techniques are in-processing methods that rely on a mixture of a fairness objective (e.g., demographic parity) and a task-specific objective (e.g., cross-entropy) during the training process. However, when data arrives in an online fashion - one instance at a time - optimizing such fairness objectives poses several challenges. In particular, group fairness objectives are defined using expectations of predictions across different demographic groups. In the online setting, where the algorithm has access to a single instance at a time, estimating the group fairness objective requires additional storage and significantly more computation (e.g., forward/backward passes) than the task-specific objective at every time step. In this paper, we propose Aranyani, an ensemble of oblique decision trees, to make fair decisions in online settings. The hierarchical tree structure of Aranyani enables parameter isolation and allows us to efficiently compute the fairness gradients using aggregate statistics of previous decisions, eliminating the need for additional storage and forward/backward passes. We also present an efficient framework to train Aranyani and theoretically analyze several of its properties. We conduct empirical evaluations on 5 publicly available benchmarks (including vision and language datasets) to show that Aranyani achieves a better accuracy-fairness trade-off compared to baseline approaches. Critical applications of machine learning, such as hiring (Dastin, 2022) and criminal recidivism (Larson et al., 2016), require special attention to avoid perpetuating biases present in training data (Corbett-Davies et al., 2017; Buolamwini & Gebru, 2018; Raji & Buolamwini, 2019). Group fairness, which is a well-studied paradigm for mitigating such biases in machine learning (Mehrabi et al., 2021; Hort et al., 2022), tries to achieve statistical parity of a system's predictions among different demographic (or protected) groups (e.g., gender or race). Most of these approaches rely on group fairness objectives that are optimized alongside task-specific objectives in an offline setting (Dwork et al., 2012). Group fairness objectives (e.g., demographic parity) are defined using expectations of predictions across different demographic groups, which requires the system to have access to labeled data from different groups.
Exact and Approximate Hierarchical Clustering Using A*
Greenberg, Craig S., Macaluso, Sebastian, Monath, Nicholas, Dubey, Avinava, Flaherty, Patrick, Zaheer, Manzil, Ahmed, Amr, Cranmer, Kyle, McCallum, Andrew
Hierarchical clustering is a critical task in numerous domains. Many approaches are based on heuristics and the properties of the resulting clusterings are studied post hoc. However, in several applications, there is a natural cost function that can be used to characterize the quality of the clustering. In those cases, hierarchical clustering can be seen as a combinatorial optimization problem. To that end, we introduce a new approach based on A* search. We overcome the prohibitively large search space by combining A* with a novel \emph{trellis} data structure. This combination results in an exact algorithm that scales beyond previous state of the art, from a search space with $10^{12}$ trees to $10^{15}$ trees, and an approximate algorithm that improves over baselines, even in enormous search spaces that contain more than $10^{1000}$ trees. We empirically demonstrate that our method achieves substantially higher quality results than baselines for a particle physics use case and other clustering benchmarks. We describe how our method provides significantly improved theoretical bounds on the time and space complexity of A* for clustering.
Amazon SageMaker Automatic Model Tuning: Scalable Black-box Optimization
Perrone, Valerio, Shen, Huibin, Zolic, Aida, Shcherbatyi, Iaroslav, Ahmed, Amr, Bansal, Tanya, Donini, Michele, Winkelmolen, Fela, Jenatton, Rodolphe, Faddoul, Jean Baptiste, Pogorzelska, Barbara, Miladinovic, Miroslav, Kenthapadi, Krishnaram, Seeger, Matthias, Archambeau, Cédric
Tuning complex machine learning systems is challenging. Machine learning models typically expose a set of hyperparameters, be it regularization, architecture, or optimization parameters, whose careful tuning is critical to achieve good performance. To democratize access to such systems, it is essential to automate this tuning process. This paper presents Amazon SageMaker Automatic Model Tuning (AMT), a fully managed system for black-box optimization at scale. AMT finds the best version of a machine learning model by repeatedly training it with different hyperparameter configurations. It leverages either random search or Bayesian optimization to choose the hyperparameter values resulting in the best-performing model, as measured by the metric chosen by the user. AMT can be used with built-in algorithms, custom algorithms, and Amazon SageMaker pre-built containers for machine learning frameworks. We discuss the core functionality, system architecture and our design principles. We also describe some more advanced features provided by AMT, such as automated early stopping and warm-starting, demonstrating their benefits in experiments.
Non-Stationary Latent Bandits
Hong, Joey, Kveton, Branislav, Zaheer, Manzil, Chow, Yinlam, Ahmed, Amr, Ghavamzadeh, Mohammad, Boutilier, Craig
Users of recommender systems often behave in a non-stationary fashion, due to their evolving preferences and tastes over time. In this work, we propose a practical approach for fast personalization to non-stationary users. The key idea is to frame this problem as a latent bandit, where the prototypical models of user behavior are learned offline and the latent state of the user is inferred online from its interactions with the models. We call this problem a non-stationary latent bandit. We propose Thompson sampling algorithms for regret minimization in non-stationary latent bandits, analyze them, and evaluate them on a real-world dataset. The main strength of our approach is that it can be combined with rich offline-learned models, which can be misspecified, and are subsequently fine-tuned online using posterior sampling. In this way, we naturally combine the strengths of offline and online learning.
Unsupervised Abstractive Dialogue Summarization for Tete-a-Tetes
Zhang, Xinyuan, Zhang, Ruiyi, Zaheer, Manzil, Ahmed, Amr
High-quality dialogue-summary paired data is expensive to produce and domain-sensitive, making abstractive dialogue summarization a challenging task. In this work, we propose the first unsupervised abstractive dialogue summarization model for tete-a-tetes (SuTaT). Unlike standard text summarization, a dialogue summarization method should consider the multi-speaker scenario where the speakers have different roles, goals, and language styles. In a tete-a-tete, such as a customer-agent conversation, SuTaT aims to summarize for each speaker by modeling the customer utterances and the agent utterances separately while retaining their correlations. SuTaT consists of a conditional generative module and two unsupervised summarization modules. The conditional generative module contains two encoders and two decoders in a variational autoencoder framework where the dependencies between two latent spaces are captured. With the same encoders and decoders, two unsupervised summarization modules equipped with sentence-level self-attention mechanisms generate summaries without using any annotations. Experimental results show that SuTaT is superior on unsupervised dialogue summarization for both automatic and human evaluations, and is capable of dialogue classification and single-turn conversation generation.
Big Bird: Transformers for Longer Sequences
Zaheer, Manzil, Guruganesh, Guru, Dubey, Avinava, Ainslie, Joshua, Alberti, Chris, Ontanon, Santiago, Pham, Philip, Ravula, Anirudh, Wang, Qifan, Yang, Li, Ahmed, Amr
Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having $O(1)$ global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.