Ahmadi, MortezaAli
Predicting Drive Test Results in Mobile Networks Using Optimization Techniques
Taheri, MohammadJava, Diyanat, Abolfazl, Ahmadi, MortezaAli, Nazari, Ali
Mobile network operators constantly optimize their networks to ensure superior service quality and coverage. This optimization is crucial for maintaining an optimal user experience and requires extensive data collection and analysis. One of the primary methods for gathering this data is through drive tests, where technical teams use specialized equipment to collect signal information across various regions. However, drive tests are both costly and time-consuming, and they face challenges such as traffic conditions, environmental factors, and limited access to certain areas. These constraints make it difficult to replicate drive tests under similar conditions. In this study, we propose a method that enables operators to predict received signal strength at specific locations using data from other drive test points. By reducing the need for widespread drive tests, this approach allows operators to save time and resources while still obtaining the necessary data to optimize their networks and mitigate the challenges associated with traditional drive tests.
Leveraging Machine Learning and Deep Learning Techniques for Improved Pathological Staging of Prostate Cancer
Ghalamkarian, Raziehsadat, Ghalamkarian, Marziehsadat, Ahmadi, MortezaAli, Ahmadi, Sayed Mohammad, Diyanat, Abolfazl
Prostate cancer (Pca) continues to be a leading cause of cancer-related mortality in men, and the limitations in precision of traditional diagnostic methods such as the Digital Rectal Exam (DRE), Prostate-Specific Antigen (PSA) testing, and biopsies underscore the critical importance of accurate staging detection in enhancing treatment outcomes and improving patient prognosis. This study leverages machine learning and deep learning approaches, along with feature selection and extraction methods, to enhance PCa pathological staging predictions using RNA sequencing data from The Cancer Genome Atlas (TCGA). Gene expression profiles from 486 tumors were analyzed using advanced algorithms, including Random Forest (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGB), and Support Vector Machine (SVM). The performance of the study is measured with respect to the F1-score, as well as precision and recall, all of which are calculated as weighted averages. The results reveal that the highest test F1-score, approximately 83%, was achieved by the Random Forest algorithm, followed by Logistic Regression at 80%, while both Extreme Gradient Boosting (XGB) and Support Vector Machine (SVM) scored around 79%. Furthermore, deep learning models with data augmentation achieved an accuracy of 71. 23%, while PCA-based dimensionality reduction reached an accuracy of 69.86%. This research highlights the potential of AI-driven approaches in clinical oncology, paving the way for more reliable diagnostic tools that can ultimately improve patient outcomes.