Goto

Collaborating Authors

 Ahmadi, Ehsan


Getting SMARTER for Motion Planning in Autonomous Driving Systems

arXiv.org Artificial Intelligence

Motion planning is a fundamental problem in autonomous driving and perhaps the most challenging to comprehensively evaluate because of the associated risks and expenses of real-world deployment. Therefore, simulations play an important role in efficient development of planning algorithms. To be effective, simulations must be accurate and realistic, both in terms of dynamics and behavior modeling, and also highly customizable in order to accommodate a broad spectrum of research frameworks. In this paper, we introduce SMARTS 2.0, the second generation of our motion planning simulator which, in addition to being highly optimized for large-scale simulation, provides many new features, such as realistic map integration, vehicle-to-vehicle (V2V) communication, traffic and pedestrian simulation, and a broad variety of sensor models. Moreover, we present a novel benchmark suite for evaluating planning algorithms in various highly challenging scenarios, including interactive driving, such as turning at intersections, and adaptive driving, in which the task is to closely follow a lead vehicle without any explicit knowledge of its intention. Each scenario is characterized by a variety of traffic patterns and road structures. We further propose a series of common and task-specific metrics to effectively evaluate the performance of the planning algorithms. At the end, we evaluate common motion planning algorithms using the proposed benchmark and highlight the challenges the proposed scenarios impose. The new SMARTS 2.0 features and the benchmark are publicly available at github.com/huawei-noah/SMARTS.


Curb Your Attention: Causal Attention Gating for Robust Trajectory Prediction in Autonomous Driving

arXiv.org Artificial Intelligence

Trajectory prediction models in autonomous driving are vulnerable to perturbations from non-causal agents whose actions should not affect the ego-agent's behavior. Such perturbations can lead to incorrect predictions of other agents' trajectories, potentially compromising the safety and efficiency of the ego-vehicle's decision-making process. Motivated by this challenge, we propose $\textit{Causal tRajecTory predICtion}$ $\textbf{(CRiTIC)}$, a novel model that utilizes a $\textit{Causal Discovery Network}$ to identify inter-agent causal relations over a window of past time steps. To incorporate discovered causal relationships, we propose a novel $\textit{Causal Attention Gating}$ mechanism to selectively filter information in the proposed Transformer-based architecture. We conduct extensive experiments on two autonomous driving benchmark datasets to evaluate the robustness of our model against non-causal perturbations and its generalization capacity. Our results indicate that the robustness of predictions can be improved by up to $\textbf{54%}$ without a significant detriment to prediction accuracy. Lastly, we demonstrate the superior domain generalizability of the proposed model, which achieves up to $\textbf{29%}$ improvement in cross-domain performance. These results underscore the potential of our model to enhance both robustness and generalization capacity for trajectory prediction in diverse autonomous driving domains. Further details can be found on our project page: https://critic-model.github.io/.


AMEND: A Mixture of Experts Framework for Long-tailed Trajectory Prediction

arXiv.org Artificial Intelligence

Accurate prediction of pedestrians' future motions is critical for intelligent driving systems. Developing models for this task requires rich datasets containing diverse sets of samples. However, the existing naturalistic trajectory prediction datasets are generally imbalanced in favor of simpler samples and lack challenging scenarios. Such a long-tail effect causes prediction models to underperform on the tail portion of the data distribution containing safety-critical scenarios. Previous methods tackle the long-tail problem using methods such as contrastive learning and class-conditioned hypernetworks. These approaches, however, are not modular and cannot be applied to many machine learning architectures. In this work, we propose a modular model-agnostic framework for trajectory prediction that leverages a specialized mixture of experts. In our approach, each expert is trained with a specialized skill with respect to a particular part of the data. To produce predictions, we utilise a router network that selects the best expert by generating relative confidence scores. We conduct experimentation on common pedestrian trajectory prediction datasets and show that besides achieving state-of-the-art performance, our method significantly performs better on long-tail scenarios. We further conduct ablation studies to highlight the contribution of different proposed components.