Agrawal, Devansh
Eclares: Energy-Aware Clarity-Driven Ergodic Search
Naveed, Kaleb Ben, Agrawal, Devansh, Vermillion, Christopher, Panagou, Dimitra
Planning informative trajectories while considering the spatial distribution of the information over the environment, as well as constraints such as the robot's limited battery capacity, makes the long-time horizon persistent coverage problem complex. Ergodic search methods consider the spatial distribution of environmental information while optimizing robot trajectories; however, current methods lack the ability to construct the target information spatial distribution for environments that vary stochastically across space and time. Moreover, current coverage methods dealing with battery capacity constraints either assume simple robot and battery models, or are computationally expensive. To address these problems, we propose a framework called Eclares, in which our contribution is two-fold. 1) First, we propose a method to construct the target information spatial distribution for ergodic trajectory optimization using clarity, an information measure bounded between [0,1]. The clarity dynamics allows us to capture information decay due to lack of measurements and to quantify the maximum attainable information in stochastic spatiotemporal environments. 2) Second, instead of directly tracking the ergodic trajectory, we introduce the energy-aware (eware) filter, which iteratively validates the ergodic trajectory to ensure that the robot has enough energy to return to the charging station when needed. The proposed eware filter is applicable to nonlinear robot models and is computationally lightweight. We demonstrate the working of the framework through a simulation case study.
gatekeeper: Safety Verification and Control for Nonlinear Systems in Unknown and Dynamic Environments
Agrawal, Devansh, Chen, Ruichang, Panagou, Dimitra
This paper presents the gatekeeper algorithm, a real-time and computationally-lightweight method to ensure that nonlinear systems can operate safely within unknown and dynamic environments despite limited perception. gatekeeper integrates with existing path planners and feedback controllers by introducing an additional verification step that ensures that proposed trajectories can be executed safely, despite nonlinear dynamics subject to bounded disturbances, input constraints and partial knowledge of the environment. Our key contribution is that (A) we propose an algorithm to recursively construct committed trajectories, and (B) we prove that tracking the committed trajectory ensures the system is safe for all time into the future. The method is demonstrated on a complicated firefighting mission in a dynamic environment, and compares against the state-of-the-art techniques for similar problems.