Goto

Collaborating Authors

Agarwal, Sanchit


From Machine Reading Comprehension to Dialogue State Tracking: Bridging the Gap

arXiv.org Artificial Intelligence

Dialogue state tracking (DST) is at the heart of task-oriented dialogue systems. However, the scarcity of labeled data is an obstacle to building accurate and robust state tracking systems that work across a variety of domains. Existing approaches generally require some dialogue data with state information and their ability to generalize to unknown domains is limited. In this paper, we propose using machine reading comprehension (RC) in state tracking from two perspectives: model architectures and datasets. We divide the slot types in dialogue state into categorical or extractive to borrow the advantages from both multiple-choice and span-based reading comprehension models. Our method achieves near the current state-of-the-art in joint goal accuracy on MultiWOZ 2.1 given full training data. More importantly, by leveraging machine reading comprehension datasets, our method outperforms the existing approaches by many a large margin in few-shot scenarios when the availability of in-domain data is limited. Lastly, even without any state tracking data, i.e., zero-shot scenario, our proposed approach achieves greater than 90% average slot accuracy in 12 out of 30 slots in MultiWOZ 2.1.


MultiWOZ 2.1: Multi-Domain Dialogue State Corrections and State Tracking Baselines

arXiv.org Artificial Intelligence

MultiWOZ is a recently-released multidomain dialogue dataset spanning 7 distinct domains and containing over 10000 dialogues, one of the largest resources of its kind to-date. Though an immensely useful resource, while building different classes of dialogue state tracking models using MultiWOZ, we detected substantial errors in the state annotations and dialogue utterances which negatively impacted the performance of our models. In order to alleviate this problem, we use crowdsourced workers to fix the state annotations and utterances in the original version of the data. Our correction process results in changes to over 32% of state annotations across 40% of the dialogue turns. In addition, we fix 146 dialogue utterances throughout the dataset focusing in particular on addressing slot value errors represented within the conversations. We then benchmark a number of state-of-the-art dialogue state tracking models on this new MultiWOZ 2.1 dataset and show joint state tracking performance on the corrected state annotations. We are publicly releasing MultiWOZ 2.1 to the community, hoping that this dataset resource will allow for more effective dialogue state tracking models to be built in the future.


Parsing Coordination for Spoken Language Understanding

arXiv.org Machine Learning

ABSTRACT Typical spoken language understanding systems provide narrow semantic parses using a domain-specific ontology. The parses contain intents and slots that are directly consumed by downstream domain applications. In this work we discuss expanding such systems to handle compound entities and intents by introducing a domain-agnostic shallow parser that handles linguistic coordination. We show that our model for parsing coordination learns domain-independent and slot-independent features and is able to segment conjunct boundaries of many different phrasal categories. We also show that using adversarial training can be effective for improving generalization across different slot types for coordination parsing. Index Terms-- spoken language understanding, chunking, coordination 1. INTRODUCTION A typical spoken language understanding (SLU) system maps user utterances to domain-specific semantic representations that can be factored into an intent and slots [1, 2]. For example, an utterance, "what is the weather like in boston" has one intent WeatherInfo and one slot type CityName whose value is "boston." Thus, parsing for such systems is often factored into two separate tasks: intent classification and entity recognition whose results are consumed by downstream domain applications.