Goto

Collaborating Authors

 Adila, Dyah


Personalize Your LLM: Fake it then Align it

arXiv.org Artificial Intelligence

Personalizing large language models (LLMs) is essential for delivering tailored interactions that improve user experience. Many existing personalization methods require fine-tuning LLMs for each user, rendering them prohibitively expensive for widespread adoption. Although retrieval-based approaches offer a more compute-efficient alternative, they still depend on large, high-quality datasets that are not consistently available for all users. To address this challenge, we propose CHAMELEON, a scalable and efficient personalization approach that uses (1) self-generated personal preference data and (2) representation editing to enable quick and cost-effective personalization. Our experiments on various tasks, including those from the LaMP personalization benchmark, show that CHAMELEON efficiently adapts models to personal preferences, improving instruction-tuned models and outperforms two personalization baselines by an average of 40% across two model architectures.


Is Free Self-Alignment Possible?

arXiv.org Artificial Intelligence

Aligning pretrained language models (LMs) is a complex and resource-intensive process, often requiring access to large amounts of ground-truth preference data and substantial compute. Are these costs necessary? That is, it is possible to align using only inherent model knowledge and without additional training? We tackle this challenge with AlignEZ, a novel approach that uses (1) self-generated preference data and (2) representation editing to provide nearly cost-free alignment. During inference, AlignEZ modifies LM representations to reduce undesirable and boost desirable components using subspaces identified via self-generated preference pairs. Our experiments reveal that this nearly cost-free procedure significantly narrows the gap between base pretrained and tuned models by an average of 31.6%, observed across six datasets and three model architectures. Additionally, we explore the potential of using AlignEZ as a means of expediting more expensive alignment procedures. Our experiments show that AlignEZ improves DPO models tuned only using a small subset of ground-truth preference data. Lastly, we study the conditions under which improvement using AlignEZ is feasible, providing valuable insights into its effectiveness.


Discovering Bias in Latent Space: An Unsupervised Debiasing Approach

arXiv.org Artificial Intelligence

The question-answering (QA) capabilities of foundation models are highly sensitive to prompt variations, rendering their performance susceptible to superficial, non-meaning-altering changes. This vulnerability often stems from the model's preference or bias towards specific input characteristics, such as option position or superficial image features in multi-modal settings. We propose to rectify this bias directly in the model's internal representation. Our approach, SteerFair, finds the bias direction in the model's representation space and steers activation values away from it during inference. Specifically, we exploit the observation that bias often adheres to simple association rules, such as the spurious association between the first option and correctness likelihood. Next, we construct demonstrations of these rules from unlabeled samples and use them to identify the bias directions. We empirically show that SteerFair significantly reduces instruction-tuned model performance variance across prompt modifications on three benchmark tasks. Remarkably, our approach surpasses a supervised baseline with 100 labels by an average of 10.86% accuracy points and 12.95 score points and matches the performance with 500 labels.


Multimodal Data Curation via Object Detection and Filter Ensembles

arXiv.org Artificial Intelligence

We propose an approach for curating multimodal data that we used for our entry in the 2023 DataComp competition filtering track. Our technique combines object detection and weak supervision-based ensembling. In the first of two steps in our approach, we employ an out-of-the-box zero-shot object detection model to extract granular information and produce a variety of filter designs. In the second step, we employ weak supervision to ensemble filtering rules. This approach results in a 4% performance improvement when compared to the best-performing baseline, producing the top-ranking position in the small scale track at the time of writing. Furthermore, in the medium scale track, we achieve a noteworthy 4.2% improvement over the baseline by simply ensembling existing baselines with weak supervision.


Mitigating Source Bias for Fairer Weak Supervision

arXiv.org Machine Learning

Weak supervision enables efficient development of training sets by reducing the need for ground truth labels. However, the techniques that make weak supervision attractive -- such as integrating any source of signal to estimate unknown labels -- also entail the danger that the produced pseudolabels are highly biased. Surprisingly, given everyday use and the potential for increased bias, weak supervision has not been studied from the point of view of fairness. We begin such a study, starting with the observation that even when a fair model can be built from a dataset with access to ground-truth labels, the corresponding dataset labeled via weak supervision can be arbitrarily unfair. To address this, we propose and empirically validate a model for source unfairness in weak supervision, then introduce a simple counterfactual fairness-based technique that can mitigate these biases. Theoretically, we show that it is possible for our approach to simultaneously improve both accuracy and fairness -- in contrast to standard fairness approaches that suffer from tradeoffs. Empirically, we show that our technique improves accuracy on weak supervision baselines by as much as 32\% while reducing demographic parity gap by 82.5\%. A simple extension of our method aimed at maximizing performance produces state-of-the-art performance in five out of ten datasets in the WRENCH benchmark.


Geometry-Aware Adaptation for Pretrained Models

arXiv.org Machine Learning

Machine learning models -- including prominent zero-shot models -- are often trained on datasets whose labels are only a small proportion of a larger label space. Such spaces are commonly equipped with a metric that relates the labels via distances between them. We propose a simple approach to exploit this information to adapt the trained model to reliably predict new classes -- or, in the case of zero-shot prediction, to improve its performance -- without any additional training. Our technique is a drop-in replacement of the standard prediction rule, swapping argmax with the Fr\'echet mean. We provide a comprehensive theoretical analysis for this approach, studying (i) learning-theoretic results trading off label space diameter, sample complexity, and model dimension, (ii) characterizations of the full range of scenarios in which it is possible to predict any unobserved class, and (iii) an optimal active learning-like next class selection procedure to obtain optimal training classes for when it is not possible to predict the entire range of unobserved classes. Empirically, using easily-available external metrics, our proposed approach, Loki, gains up to 29.7% relative improvement over SimCLR on ImageNet and scales to hundreds of thousands of classes. When no such metric is available, Loki can use self-derived metrics from class embeddings and obtains a 10.5% improvement on pretrained zero-shot models such as CLIP.


AutoWS-Bench-101: Benchmarking Automated Weak Supervision with 100 Labels

arXiv.org Machine Learning

Weak supervision (WS) is a powerful method to build labeled datasets for training supervised models in the face of little-to-no labeled data. It replaces hand-labeling data with aggregating multiple noisy-but-cheap label estimates expressed by labeling functions (LFs). While it has been used successfully in many domains, weak supervision's application scope is limited by the difficulty of constructing labeling functions for domains with complex or high-dimensional features. To address this, a handful of methods have proposed automating the LF design process using a small set of ground truth labels. In this work, we introduce AutoWS-Bench-101: a framework for evaluating automated WS (AutoWS) techniques in challenging WS settings -- a set of diverse application domains on which it has been previously difficult or impossible to apply traditional WS techniques. While AutoWS is a promising direction toward expanding the application-scope of WS, the emergence of powerful methods such as zero-shot foundation models reveals the need to understand how AutoWS techniques compare or cooperate with modern zero-shot or few-shot learners. This informs the central question of AutoWS-Bench-101: given an initial set of 100 labels for each task, we ask whether a practitioner should use an AutoWS method to generate additional labels or use some simpler baseline, such as zero-shot predictions from a foundation model or supervised learning. We observe that in many settings, it is necessary for AutoWS methods to incorporate signal from foundation models if they are to outperform simple few-shot baselines, and AutoWS-Bench-101 promotes future research in this direction. We conclude with a thorough ablation study of AutoWS methods.


Zero-Shot Robustification of Zero-Shot Models With Foundation Models

arXiv.org Artificial Intelligence

Zero-shot inference is a powerful paradigm that enables the use of large pretrained models for downstream classification tasks without further training. However, these models are vulnerable to inherited biases that can impact their performance. The traditional solution is fine-tuning, but this undermines the key advantage of pretrained models, which is their ability to be used out-of-the-box. We propose RoboShot, a method that improves the robustness of pretrained model embeddings in a fully zero-shot fashion. First, we use zero-shot language models (LMs) to obtain useful insights from task descriptions. These insights are embedded and used to remove harmful and boost useful components in embeddings -- without any supervision. Theoretically, we provide a simple and tractable model for biases in zero-shot embeddings and give a result characterizing under what conditions our approach can boost performance. Empirically, we evaluate RoboShot on nine image and NLP classification tasks and show an average improvement of 15.98% over several zero-shot baselines. Additionally, we demonstrate that RoboShot is compatible with a variety of pretrained and language models.


Understanding Out-of-distribution: A Perspective of Data Dynamics

arXiv.org Artificial Intelligence

Despite machine learning models' success in Natural Language Processing (NLP) tasks, predictions from these models frequently fail on out-of-distribution (OOD) samples. Prior works have focused on developing state-of-the-art methods for detecting OOD. The fundamental question of how OOD samples differ from in-distribution samples remains unanswered. This paper explores how data dynamics in training models can be used to understand the fundamental differences between OOD and in-distribution samples in extensive detail. We found that syntactic characteristics of the data samples that the model consistently predicts incorrectly in both OOD and in-distribution cases directly contradict each other. In addition, we observed preliminary evidence supporting the hypothesis that models are more likely to latch on trivial syntactic heuristics (e.g., overlap of words between two sentences) when making predictions on OOD samples. We hope our preliminary study accelerates the data-centric analysis on various machine learning phenomena.