Adebara, Ife
Where Are We? Evaluating LLM Performance on African Languages
Adebara, Ife, Toyin, Hawau Olamide, Ghebremichael, Nahom Tesfu, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad
Africa's rich linguistic heritage remains underrepresented in NLP, largely due to historical policies that favor foreign languages and create significant data inequities. In this paper, we integrate theoretical insights on Africa's language landscape with an empirical evaluation using Sahara - a comprehensive benchmark curated from large-scale, publicly accessible datasets capturing the continent's linguistic diversity. By systematically assessing the performance of leading large language models (LLMs) on Sahara, we demonstrate how policy-induced data variations directly impact model effectiveness across African languages. Our findings reveal that while a few languages perform reasonably well, many Indigenous languages remain marginalized due to sparse data. Leveraging these insights, we offer actionable recommendations for policy reforms and inclusive data practices. Overall, our work underscores the urgent need for a dual approach - combining theoretical understanding with empirical evaluation - to foster linguistic diversity in AI for African communities.
Toucan: Many-to-Many Translation for 150 African Language Pairs
Elmadany, AbdelRahim, Adebara, Ife, Abdul-Mageed, Muhammad
We address a notable gap in Natural Language Processing (NLP) by introducing a collection of resources designed to improve Machine Translation (MT) for low-resource languages, with a specific focus on African languages. First, we introduce two language models (LMs), Cheetah-1.2B and Cheetah-3.7B, with 1.2 billion and 3.7 billion parameters respectively. Next, we finetune the aforementioned models to create toucan, an Afrocentric machine translation model designed to support 156 African language pairs. To evaluate Toucan, we carefully develop an extensive machine translation benchmark, dubbed AfroLingu-MT, tailored for evaluating machine translation. Toucan significantly outperforms other models, showcasing its remarkable performance on MT for African languages. Finally, we train a new model, spBLEU-1K, to enhance translation evaluation metrics, covering 1K languages, including 614 African languages. This work aims to advance the field of NLP, fostering cross-cultural understanding and knowledge exchange, particularly in regions with limited language resources such as Africa. The GitHub repository for the Toucan project is available at https://github.com/UBC-NLP/Toucan.
Interplay of Machine Translation, Diacritics, and Diacritization
Chen, Wei-Rui, Adebara, Ife, Abdul-Mageed, Muhammad
We investigate two research questions: (1) how do machine translation (MT) and diacritization influence the performance of each other in a multi-task learning setting (2) the effect of keeping (vs. removing) diacritics on MT performance. We examine these two questions in both high-resource (HR) and low-resource (LR) settings across 55 different languages (36 African languages and 19 European languages). For (1), results show that diacritization significantly benefits MT in the LR scenario, doubling or even tripling performance for some languages, but harms MT in the HR scenario. We find that MT harms diacritization in LR but benefits significantly in HR for some languages. For (2), MT performance is similar regardless of diacritics being kept or removed. In addition, we propose two classes of metrics to measure the complexity of a diacritical system, finding these metrics to correlate positively with the performance of our diacritization models. Overall, our work provides insights for developing MT and diacritization systems under different data size conditions and may have implications that generalize beyond the 55 languages we investigate.
Cheetah: Natural Language Generation for 517 African Languages
Adebara, Ife, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad
Low-resource African languages pose unique challenges for natural language processing (NLP) tasks, including natural language generation (NLG). In this paper, we develop Cheetah, a massively multilingual NLG language model for African languages. Cheetah supports 517 African languages and language varieties, allowing us to address the scarcity of NLG resources and provide a solution to foster linguistic diversity. We demonstrate the effectiveness of Cheetah through comprehensive evaluations across six generation downstream tasks. In five of the six tasks, Cheetah significantly outperforms other models, showcasing its remarkable performance for generating coherent and contextually appropriate text in a wide range of African languages. We additionally conduct a detailed human evaluation to delve deeper into the linguistic capabilities of Cheetah. The introduction of Cheetah has far-reaching benefits for linguistic diversity. By leveraging pretrained models and adapting them to specific languages, our approach facilitates the development of practical NLG applications for African communities. The findings of this study contribute to advancing NLP research in low-resource settings, enabling greater accessibility and inclusion for African languages in a rapidly expanding digital landscape. We publicly release our models for research.
Fumbling in Babel: An Investigation into ChatGPT's Language Identification Ability
Chen, Wei-Rui, Adebara, Ife, Doan, Khai Duy, Liao, Qisheng, Abdul-Mageed, Muhammad
Recently, ChatGPT has emerged as a powerful NLP tool that can carry out several tasks. However, the range of languages ChatGPT can handle remains largely a mystery. In this work, we investigate ChatGPT's language identification abilities. For this purpose, we compile Babel-670, a benchmark comprising $670$ languages representing $23$ language families. Languages in Babel-670 run the gamut between the very high-resource to the very low-resource and are spoken in five continents. We then study ChatGPT's (both GPT-3.5 and GPT-4) ability to (i) identify both language names and language codes (ii) under both zero- and few-shot conditions (iii) with and without provision of label set. When compared to smaller finetuned language identification tools, we find that ChatGPT lags behind. Our empirical analysis shows the reality that ChatGPT still resides in a state of potential enhancement before it can sufficiently serve diverse communities.
SERENGETI: Massively Multilingual Language Models for Africa
Adebara, Ife, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad, Inciarte, Alcides Alcoba
Multilingual pretrained language models (mPLMs) acquire valuable, generalizable linguistic information during pretraining and have advanced the state of the art on task-specific finetuning. To date, only ~31 out of ~2,000 African languages are covered in existing language models. We ameliorate this limitation by developing SERENGETI, a massively multilingual language model that covers 517 African languages and language varieties. We evaluate our novel models on eight natural language understanding tasks across 20 datasets, comparing to 4 mPLMs that cover 4-23 African languages. SERENGETI outperforms other models on 11 datasets across the eights tasks, achieving 82.27 average F_1. We also perform analyses of errors from our models, which allows us to investigate the influence of language genealogy and linguistic similarity when the models are applied under zero-shot settings. We will publicly release our models for research.\footnote{\href{https://github.com/UBC-NLP/serengeti}{https://github.com/UBC-NLP/serengeti}}
UBC-DLNLP at SemEval-2023 Task 12: Impact of Transfer Learning on African Sentiment Analysis
Bhatia, Gagan, Adebara, Ife, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad
We describe our contribution to the SemEVAl 2023 AfriSenti-SemEval shared task, where we tackle the task of sentiment analysis in 14 different African languages. We develop both monolingual and multilingual models under a full supervised setting (subtasks A and B). We also develop models for the zero-shot setting (subtask C). Our approach involves experimenting with transfer learning using six language models, including further pertaining of some of these models as well as a final finetuning stage. Our best performing models achieve an F1-score of 70.36 on development data and an F1-score of 66.13 on test data. Unsurprisingly, our results demonstrate the effectiveness of transfer learning and fine-tuning techniques for sentiment analysis across multiple languages. Our approach can be applied to other sentiment analysis tasks in different languages and domains.
AfroLID: A Neural Language Identification Tool for African Languages
Adebara, Ife, Elmadany, AbdelRahim, Abdul-Mageed, Muhammad, Inciarte, Alcides Alcoba
Language identification (LID) is a crucial precursor for NLP, especially for mining web data. Problematically, most of the world's 7000+ languages today are not covered by LID technologies. We address this pressing issue for Africa by introducing AfroLID, a neural LID toolkit for $517$ African languages and varieties. AfroLID exploits a multi-domain web dataset manually curated from across 14 language families utilizing five orthographic systems. When evaluated on our blind Test set, AfroLID achieves 95.89 F_1-score. We also compare AfroLID to five existing LID tools that each cover a small number of African languages, finding it to outperform them on most languages. We further show the utility of AfroLID in the wild by testing it on the acutely under-served Twitter domain. Finally, we offer a number of controlled case studies and perform a linguistically-motivated error analysis that allow us to both showcase AfroLID's powerful capabilities and limitations.
Improving Similar Language Translation With Transfer Learning
Adebara, Ife, Abdul-Mageed, Muhammad
We investigate transfer learning based on pre-trained neural machine translation models to translate between (low-resource) similar languages. This work is part of our contribution to the WMT 2021 Similar Languages Translation Shared Task where we submitted models for different language pairs, including French-Bambara, Spanish-Catalan, and Spanish-Portuguese in both directions. Our models for Catalan-Spanish ($82.79$ BLEU) and Portuguese-Spanish ($87.11$ BLEU) rank top 1 in the official shared task evaluation, and we are the only team to submit models for the French-Bambara pairs.
Translating the Unseen? Yor\`ub\'a $\rightarrow$ English MT in Low-Resource, Morphologically-Unmarked Settings
Adebara, Ife, Abdul-Mageed, Muhammad, Silfverberg, Miikka
Translating between languages where certain features are marked morphologically in one but absent or marked contextually in the other is an important test case for machine translation. When translating into English which marks (in)definiteness morphologically, from Yor\`ub\'a which uses bare nouns but marks these features contextually, ambiguities arise. In this work, we perform fine-grained analysis on how an SMT system compares with two NMT systems (BiLSTM and Transformer) when translating bare nouns in Yor\`ub\'a into English. We investigate how the systems what extent they identify BNs, correctly translate them, and compare with human translation patterns. We also analyze the type of errors each model makes and provide a linguistic description of these errors. We glean insights for evaluating model performance in low-resource settings. In translating bare nouns, our results show the transformer model outperforms the SMT and BiLSTM models for 4 categories, the BiLSTM outperforms the SMT model for 3 categories while the SMT outperforms the NMT models for 1 category.