Goto

Collaborating Authors

 Ackerman, Samuel


Statistical multi-metric evaluation and visualization of LLM system predictive performance

arXiv.org Artificial Intelligence

The evaluation of generative or discriminative large language model (LLM)-based systems is often a complex multi-dimensional problem. Typically, a set of system configuration alternatives are evaluated on one or more benchmark datasets, each with one or more evaluation metrics, which may differ between datasets. We often want to evaluate -- with a statistical measure of significance -- whether systems perform differently either on a given dataset according to a single metric, on aggregate across metrics on a dataset, or across datasets. Such evaluations can be done to support decision-making, such as deciding whether a particular system component change (e.g., choice of LLM or hyperparameter values) significantly improves performance over the current system configuration, or, more generally, whether a fixed set of system configurations (e.g., a leaderboard list) have significantly different performances according to metrics of interest. We present a framework implementation that automatically performs the correct statistical tests, properly aggregates the statistical results across metrics and datasets (a nontrivial task), and can visualize the results. The framework is demonstrated on the multi-lingual code generation benchmark CrossCodeEval, for several state-of-the-art LLMs.


Using Combinatorial Optimization to Design a High quality LLM Solution

arXiv.org Artificial Intelligence

We introduce a novel LLM based solution design approach that utilizes combinatorial optimization and sampling. Specifically, a set of factors that influence the quality of the solution are identified. They typically include factors that represent prompt types, LLM inputs alternatives, and parameters governing the generation and design alternatives. Identifying the factors that govern the LLM solution quality enables the infusion of subject matter expert knowledge. Next, a set of interactions between the factors are defined and combinatorial optimization is used to create a small subset $P$ that ensures all desired interactions occur in $P$. Each element $p \in P$ is then developed into an appropriate benchmark. Applying the alternative solutions on each combination, $p \in P$ and evaluating the results facilitate the design of a high quality LLM solution pipeline. The approach is especially applicable when the design and evaluation of each benchmark in $P$ is time-consuming and involves manual steps and human evaluation. Given its efficiency the approach can also be used as a baseline to compare and validate an autoML approach that searches over the factors governing the solution.


Predicting Question-Answering Performance of Large Language Models through Semantic Consistency

arXiv.org Artificial Intelligence

Semantic consistency of a language model is broadly defined as the model's ability to produce semantically-equivalent outputs, given semantically-equivalent inputs. We address the task of assessing question-answering (QA) semantic consistency of contemporary large language models (LLMs) by manually creating a benchmark dataset with high-quality paraphrases for factual questions, and release the dataset to the community. We further combine the semantic consistency metric with additional measurements suggested in prior work as correlating with LLM QA accuracy, for building and evaluating a framework for factual QA reference-less performance prediction -- predicting the likelihood of a language model to accurately answer a question. Evaluating the framework on five contemporary LLMs, we demonstrate encouraging, significantly outperforming baselines, results.


Characterizing how 'distributional' NLP corpora distance metrics are

arXiv.org Artificial Intelligence

A corpus of vector-embedded text documents has some empirical distribution. Given two corpora, we want to calculate a single metric of distance (e.g., Mauve, Frechet Inception) between them. We describe an abstract quality, called `distributionality', of such metrics. A non-distributional metric tends to use very local measurements, or uses global measurements in a way that does not fully reflect the distributions' true distance. For example, if individual pairwise nearest-neighbor distances are low, it may judge the two corpora to have low distance, even if their two distributions are in fact far from each other. A more distributional metric will, in contrast, better capture the distributions' overall distance. We quantify this quality by constructing a Known-Similarity Corpora set from two paraphrase corpora and calculating the distance between paired corpora from it. The distances' trend shape as set element separation increases should quantify the distributionality of the metric. We propose that Average Hausdorff Distance and energy distance between corpora are representative examples of non-distributional and distributional distance metrics, to which other metrics can be compared, to evaluate how distributional they are.


Reliable and Interpretable Drift Detection in Streams of Short Texts

arXiv.org Artificial Intelligence

Data drift is the change in model input data that is one of the key factors leading to machine learning models performance degradation over time. Monitoring drift helps detecting these issues and preventing their harmful consequences. Meaningful drift interpretation is a fundamental step towards effective re-training of the model. In this study we propose an end-to-end framework for reliable model-agnostic change-point detection and interpretation in large task-oriented dialog systems, proven effective in multiple customer deployments. We evaluate our approach and demonstrate its benefits with a novel variant of intent classification training dataset, simulating customer requests to a dialog system. We make the data publicly available.


Automatic Generation of Attention Rules For Containment of Machine Learning Model Errors

arXiv.org Artificial Intelligence

Machine learning (ML) solutions are prevalent in many applications. However, many challenges exist in making these solutions business-grade. For instance, maintaining the error rate of the underlying ML models at an acceptably low level. Typically, the true relationship between feature inputs and the target feature to be predicted is uncertain, and hence statistical in nature. The approach we propose is to separate the observations that are the most likely to be predicted incorrectly into 'attention sets'. These can directly aid model diagnosis and improvement, and be used to decide on alternative courses of action for these problematic observations. We present several algorithms (`strategies') for determining optimal rules to separate these observations. In particular, we prefer strategies that use feature-based slicing because they are human-interpretable, model-agnostic, and require minimal supplementary inputs or knowledge. In addition, we show that these strategies outperform several common baselines, such as selecting observations with prediction confidence below a threshold. To evaluate strategies, we introduce metrics to measure various desired qualities, such as their performance, stability, and generalizability to unseen data; the strategies are evaluated on several publicly-available datasets. We use TOPSIS, a Multiple Criteria Decision Making method, to aggregate these metrics into a single quality score for each strategy, to allow comparison.


Measuring the Measuring Tools: An Automatic Evaluation of Semantic Metrics for Text Corpora

arXiv.org Artificial Intelligence

The ability to compare the semantic similarity between text corpora is important in a variety of natural language processing applications. However, standard methods for evaluating these metrics have yet to be established. We propose a set of automatic and interpretable measures for assessing the characteristics of corpus-level semantic similarity metrics, allowing sensible comparison of their behavior. We demonstrate the effectiveness of our evaluation measures in capturing fundamental characteristics by evaluating them on a collection of classical and state-of-the-art metrics. Our measures revealed that recently-developed metrics are becoming better in identifying semantic distributional mismatch while classical metrics are more sensitive to perturbations in the surface text levels.


Detecting model drift using polynomial relations

arXiv.org Artificial Intelligence

Machine learning (ML) models serve critical functions, such as classifying loan applicants as good or bad risks. Each model is trained under the assumption that the data used in training, and the data used in field come from the same underlying unknown distribution. Often this assumption is broken in practice. It is desirable to identify when this occurs in order to minimize the impact on model performance. We suggest a new approach to detect change in the data distribution by identifying polynomial relations between the data features. We measure the strength of each identified relation using its R-square value. A strong polynomial relation captures a significant trait of the data which should remain stable if the data distribution does not change. We thus use a set of learned strong polynomial relations to identify drift. For a set of polynomial relations that are stronger than a given desired threshold, we calculate the amount of drift observed for that relation. The amount of drift is estimated by calculating the Bayes Factor for the polynomial relation likelihood of the baseline data versus field data. We empirically validate the approach by simulating a range of changes in three publicly-available data sets, and demonstrate the ability to identify drift using the Bayes Factor of the polynomial relation likelihood change.


Towards API Testing Across Cloud and Edge

arXiv.org Artificial Intelligence

API economy is driving the digital transformation of business applications across the hybrid Cloud and edge environments. For such transformations to succeed, end-to-end testing of the application API composition is required. Testing of API compositions, even in centralized Cloud environments, is challenging as it requires coverage of functional as well as reliability requirements. The combinatorial space of scenarios is huge, e.g., API input parameters, order of API execution, and network faults. Hybrid Cloud and edge environments exacerbate the challenge of API testing due to the need to coordinate test execution across dynamic wide-area networks, possibly across network boundaries. To handle this challenge, we envision a test framework named Distributed Software Test Kit (DSTK). The DSTK leverages Combinatorial Test Design (CTD) to cover the functional requirements and then automatically covers the reliability requirements via under-the-hood closed loop between test execution feedback and AI based search algorithms. In each iteration of the closed loop, the search algorithms generate more reliability test scenarios to be executed next. Specifically, five kinds of reliability tests are envisioned: out-of-order execution of APIs, network delays and faults, API performance and throughput, changes in API call graph patterns, and changes in application topology.


Detection of data drift and outliers affecting machine learning model performance over time

arXiv.org Machine Learning

A trained ML model is deployed on another `test' dataset where target feature values (labels) are unknown. Drift is distribution change between the training and deployment data, which is concerning if model performance changes. For a cat/dog image classifier, for instance, drift during deployment could be rabbit images (new class) or cat/dog images with changed characteristics (change in distribution). We wish to detect these changes but can't measure accuracy without deployment data labels. We instead detect drift indirectly by nonparametrically testing the distribution of model prediction confidence for changes. This generalizes our method and sidesteps domain-specific feature representation. We address important statistical issues, particularly Type-1 error control in sequential testing, using Change Point Models (CPMs; see Adams and Ross 2012). We also use nonparametric outlier methods to show the user suspicious observations for model diagnosis, since the before/after change confidence distributions overlap significantly. In experiments to demonstrate robustness, we train on a subset of MNIST digit classes, then insert drift (e.g., unseen digit class) in deployment data in various settings (gradual/sudden changes in the drift proportion). A novel loss function is introduced to compare the performance (detection delay, Type-1 and 2 errors) of a drift detector under different levels of drift class contamination.