Goto

Collaborating Authors

 Abrahamsson, Pekka


Mapping Trustworthiness in Large Language Models: A Bibliometric Analysis Bridging Theory to Practice

arXiv.org Artificial Intelligence

The rapid proliferation of Large Language Models (LLMs) has raised pressing concerns regarding their trustworthiness, spanning issues of reliability, transparency, fairness, and ethical alignment. Despite the increasing adoption of LLMs across various domains, there remains a lack of consensus on how to operationalize trustworthiness in practice. This study bridges the gap between theoretical discussions and implementation by conducting a bibliometric mapping analysis of 2,006 publications from 2019 to 2025. Through co-authorship networks, keyword co-occurrence analysis, and thematic evolution tracking, we identify key research trends, influential authors, and prevailing definitions of LLM trustworthiness. Additionally, a systematic review of 68 core papers is conducted to examine conceptualizations of trust and their practical implications. Our findings reveal that trustworthiness in LLMs is often framed through existing organizational trust frameworks, emphasizing dimensions such as ability, benevolence, and integrity. However, a significant gap exists in translating these principles into concrete development strategies. To address this, we propose a structured mapping of 20 trust-enhancing techniques across the LLM lifecycle, including retrieval-augmented generation (RAG), explainability techniques, and post-training audits. By synthesizing bibliometric insights with practical strategies, this study contributes towards fostering more transparent, accountable, and ethically aligned LLMs, ensuring their responsible deployment in real-world applications.


Anomaly Detection in Smart Power Grids with Graph-Regularized MS-SVDD: a Multimodal Subspace Learning Approach

arXiv.org Artificial Intelligence

In this paper, we address an anomaly detection problem in smart power grids using Multimodal Subspace Support Vector Data Description (MS-SVDD). This approach aims to leverage better feature relations by considering the data as coming from different modalities. These data are projected into a shared lower-dimensionality subspace which aims to preserve their inner characteristics. To supplement the previous work on this subject, we introduce novel multimodal graph-embedded regularizers that leverage graph information for every modality to enhance the training process, and we consider an improved training equation that allows us to maximize or minimize each modality according to the specified criteria. We apply this regularized graph-embedded model on a 3-modalities dataset after having generalized MS-SVDD algorithms to any number of modalities. To set up our application, we propose a whole preprocessing procedure to extract One-Class Classification training instances from time-bounded event time series that are used to evaluate both the reliability and earliness of our model for Event Detection.


GPT versus Humans: Uncovering Ethical Concerns in Conversational Generative AI-empowered Multi-Robot Systems

arXiv.org Artificial Intelligence

The emergence of generative artificial intelligence (GAI) and large language models (LLMs) such ChatGPT has enabled the realization of long-harbored desires in software and robotic development. The technology however, has brought with it novel ethical challenges. These challenges are compounded by the application of LLMs in other machine learning systems, such as multi-robot systems. The objectives of the study were to examine novel ethical issues arising from the application of LLMs in multi-robot systems. Unfolding ethical issues in GPT agent behavior (deliberation of ethical concerns) was observed, and GPT output was compared with human experts. The article also advances a model for ethical development of multi-robot systems. A qualitative workshop-based method was employed in three workshops for the collection of ethical concerns: two human expert workshops (N=16 participants) and one GPT-agent-based workshop (N=7 agents; two teams of 6 agents plus one judge). Thematic analysis was used to analyze the qualitative data. The results reveal differences between the human-produced and GPT-based ethical concerns. Human experts placed greater emphasis on new themes related to deviance, data privacy, bias and unethical corporate conduct. GPT agents emphasized concerns present in existing AI ethics guidelines. The study contributes to a growing body of knowledge in context-specific AI ethics and GPT application. It demonstrates the gap between human expert thinking and LLM output, while emphasizing new ethical concerns emerging in novel technology.


Can We Trust AI Agents? An Experimental Study Towards Trustworthy LLM-Based Multi-Agent Systems for AI Ethics

arXiv.org Artificial Intelligence

Ethical AI development is crucial as new technologies and concerns emerge, but objective, practical ethical guidance remains debated. This study examines LLMs in developing ethical AI systems, assessing how trustworthiness-enhancing techniques affect ethical AI output generation. Using the Design Science Research (DSR) method, we identify techniques for LLM trustworthiness: multi-agents, distinct roles, structured communication, and multiple rounds of debate. We design the multi-agent prototype LLM-BMAS, where agents engage in structured discussions on real-world ethical AI issues from the AI Incident Database. The prototype's performance is evaluated through thematic analysis, hierarchical clustering, ablation studies, and source code execution. Our system generates around 2,000 lines per run, compared to only 80 lines in the ablation study. Discussions reveal terms like bias detection, transparency, accountability, user consent, GDPR compliance, fairness evaluation, and EU AI Act compliance, showing LLM-BMAS's ability to generate thorough source code and documentation addressing often-overlooked ethical AI issues. However, practical challenges in source code integration and dependency management may limit smooth system adoption by practitioners. This study aims to shed light on enhancing trustworthiness in LLMs to support practitioners in developing ethical AI-based systems.


Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report

arXiv.org Artificial Intelligence

This paper presents an experience report on the development of Retrieval Augmented Generation (RAG) systems using PDF documents as the primary data source. The RAG architecture combines generative capabilities of Large Language Models (LLMs) with the precision of information retrieval. This approach has the potential to redefine how we interact with and augment both structured and unstructured knowledge in generative models to enhance transparency, accuracy, and contextuality of responses. The paper details the end-to-end pipeline, from data collection, preprocessing, to retrieval indexing and response generation, highlighting technical challenges and practical solutions. We aim to offer insights to researchers and practitioners developing similar systems using two distinct approaches: OpenAI's Assistant API with GPT Series and Llama's open-source models. The practical implications of this research lie in enhancing the reliability of generative AI systems in various sectors where domain-specific knowledge and real-time information retrieval is important. The Python code used in this work is also available at: https://github.com/GPT-Laboratory/RAG-LLM-Development-Guidebook-from-PDFs.


LLM-based agents for automating the enhancement of user story quality: An early report

arXiv.org Artificial Intelligence

In agile software development, maintaining high-quality user stories is crucial, but also challenging. This study explores the use of large language models to automatically improve the user story quality in Austrian Post Group IT agile teams. We developed a reference model for an Autonomous LLM-based Agent System and implemented it at the company. The quality of user stories in the study and the effectiveness of these agents for user story quality improvement was assessed by 11 participants across six agile teams. Our findings demonstrate the potential of LLMs in improving user story quality, contributing to the research on AI role in agile development, and providing a practical example of the transformative impact of AI in an industry setting.


Business and ethical concerns in domestic Conversational Generative AI-empowered multi-robot systems

arXiv.org Artificial Intelligence

Business and technology are intricately connected through logic and design. They are equally sensitive to societal changes and may be devastated by scandal. Cooperative multi-robot systems (MRSs) are on the rise, allowing robots of different types and brands to work together in diverse contexts. Generative artificial intelligence has been a dominant topic in recent artificial intelligence (AI) discussions due to its capacity to mimic humans through the use of natural language and the production of media, including deep fakes. In this article, we focus specifically on the conversational aspects of generative AI, and hence use the term Conversational Generative artificial intelligence (CGI). Like MRSs, CGIs have enormous potential for revolutionizing processes across sectors and transforming the way humans conduct business. From a business perspective, cooperative MRSs alone, with potential conflicts of interest, privacy practices, and safety concerns, require ethical examination. MRSs empowered by CGIs demand multi-dimensional and sophisticated methods to uncover imminent ethical pitfalls. This study focuses on ethics in CGI-empowered MRSs while reporting the stages of developing the MORUL model.


The Key Concepts of Ethics of Artificial Intelligence - A Keyword based Systematic Mapping Study

arXiv.org Artificial Intelligence

The growing influence and decision-making capacities of Autonomous systems and Artificial Intelligence in our lives force us to consider the values embedded in these systems. But how ethics should be implemented into these systems? In this study, the solution is seen on philosophical conceptualization as a framework to form practical implementation model for ethics of AI. To take the first steps on conceptualization main concepts used on the field needs to be identified. A keyword based Systematic Mapping Study (SMS) on the keywords used in AI and ethics was conducted to help in identifying, defying and comparing main concepts used in current AI ethics discourse. Out of 1062 papers retrieved SMS discovered 37 re-occurring keywords in 83 academic papers. We suggest that the focus on finding keywords is the first step in guiding and providing direction for future research in the AI ethics field.