Abend, Omri
Identifying Narrative Patterns and Outliers in Holocaust Testimonies Using Topic Modeling
Ifergan, Maxim, Keydar, Renana, Abend, Omri, Pinchevski, Amit
The vast collection of Holocaust survivor testimonies presents invaluable historical insights but poses challenges for manual analysis. This paper leverages advanced Natural Language Processing (NLP) techniques to explore the USC Shoah Foundation Holocaust testimony corpus. By treating testimonies as structured question-and-answer sections, we apply topic modeling to identify key themes. We experiment with BERTopic, which leverages recent advances in language modeling technology. We align testimony sections into fixed parts, revealing the evolution of topics across the corpus of testimonies. This highlights both a common narrative schema and divergences between subgroups based on age and gender. We introduce a novel method to identify testimonies within groups that exhibit atypical topic distributions resembling those of other groups. This study offers unique insights into the complex narratives of Holocaust survivors, demonstrating the power of NLP to illuminate historical discourse and identify potential deviations in survivor experiences.
Cross-linguistically Consistent Semantic and Syntactic Annotation of Child-directed Speech
Szubert, Ida, Abend, Omri, Schneider, Nathan, Gibbon, Samuel, Mahon, Louis, Goldwater, Sharon, Steedman, Mark
This paper proposes a methodology for constructing such corpora of child directed speech (CDS) paired with sentential logical forms, and uses this method to create two such corpora, in English and Hebrew. The approach enforces a cross-linguistically consistent representation, building on recent advances in dependency representation and semantic parsing. Specifically, the approach involves two steps. First, we annotate the corpora using the Universal Dependencies (UD) scheme for syntactic annotation, which has been developed to apply consistently to a wide variety of domains and typologically diverse languages. Next, we further annotate these data by applying an automatic method for transducing sentential logical forms (LFs) from UD structures. The UD and LF representations have complementary strengths: UD structures are language-neutral and support consistent and reliable annotation by multiple annotators, whereas LFs are neutral as to their syntactic derivation and transparently encode semantic relations. Using this approach, we provide syntactic and semantic annotation for two corpora from CHILDES: Brown's Adam corpus (English; we annotate ~80% of its child-directed utterances), all child-directed utterances from Berman's Hagar corpus (Hebrew). We verify the quality of the UD annotation using an inter-annotator agreement study, and manually evaluate the transduced meaning representations. We then demonstrate the utility of the compiled corpora through (1) a longitudinal corpus study of the prevalence of different syntactic and semantic phenomena in the CDS, and (2) applying an existing computational model of language acquisition to the two corpora and briefly comparing the results across languages.
MuLER: Detailed and Scalable Reference-based Evaluation
Karidi, Taelin, Choshen, Leshem, Patel, Gal, Abend, Omri
We propose a novel methodology (namely, MuLER) that transforms any reference-based evaluation metric for text generation, such as machine translation (MT) into a fine-grained analysis tool. Given a system and a metric, MuLER quantifies how much the chosen metric penalizes specific error types (e.g., errors in translating names of locations). MuLER thus enables a detailed error analysis which can lead to targeted improvement efforts for specific phenomena. We perform experiments in both synthetic and naturalistic settings to support MuLER's validity and showcase its usability in MT evaluation, and other tasks, such as summarization. Analyzing all submissions to WMT in 2014-2020, we find consistent trends. For example, nouns and verbs are among the most frequent POS tags. However, they are among the hardest to translate. Performance on most POS tags improves with overall system performance, but a few are not thus correlated (their identity changes from language to language). Preliminary experiments with summarization reveal similar trends.
Human Learning by Model Feedback: The Dynamics of Iterative Prompting with Midjourney
Don-Yehiya, Shachar, Choshen, Leshem, Abend, Omri
Generating images with a Text-to-Image model often requires multiple trials, where human users iteratively update their prompt based on feedback, namely the output image. Taking inspiration from cognitive work on reference games and dialogue alignment, this paper analyzes the dynamics of the user prompts along such iterations. We compile a dataset of iterative interactions of human users with Midjourney. Our analysis then reveals that prompts predictably converge toward specific traits along these iterations. We further study whether this convergence is due to human users, realizing they missed important details, or due to adaptation to the model's ``preferences'', producing better images for a specific language style. We show initial evidence that both possibilities are at play. The possibility that users adapt to the model's preference raises concerns about reusing user data for further training. The prompts may be biased towards the preferences of a specific model, rather than align with human intentions and natural manner of expression.
Improving Cross-Lingual Transfer through Subtree-Aware Word Reordering
Arviv, Ofir, Nikolaev, Dmitry, Karidi, Taelin, Abend, Omri
Despite the impressive growth of the abilities of multilingual language models, such as XLM-R and mT5, it has been shown that they still face difficulties when tackling typologically-distant languages, particularly in the low-resource setting. One obstacle for effective cross-lingual transfer is variability in word-order patterns. It can be potentially mitigated via source- or target-side word reordering, and numerous approaches to reordering have been proposed. However, they rely on language-specific rules, work on the level of POS tags, or only target the main clause, leaving subordinate clauses intact. To address these limitations, we present a new powerful reordering method, defined in terms of Universal Dependencies, that is able to learn fine-grained word-order patterns conditioned on the syntactic context from a small amount of annotated data and can be applied at all levels of the syntactic tree. We conduct experiments on a diverse set of tasks and show that our method consistently outperforms strong baselines over different language pairs and model architectures. This performance advantage holds true in both zero-shot and few-shot scenarios.
Parallel Context Windows for Large Language Models
Ratner, Nir, Levine, Yoav, Belinkov, Yonatan, Ram, Ori, Magar, Inbal, Abend, Omri, Karpas, Ehud, Shashua, Amnon, Leyton-Brown, Kevin, Shoham, Yoav
When applied to processing long text, Large Language Models (LLMs) are limited by their context window. Existing efforts to address this limitation involve training specialized architectures, and cannot be easily applied to off-the-shelf LLMs. We present Parallel Context Windows (PCW), a method that alleviates the context window restriction for any off-the-shelf LLM without further training. The key to the approach is to carve a long context into chunks (``windows''), restrict the attention mechanism to apply only within each window, and re-use the positional embeddings across the windows. Our main results test the PCW approach on in-context learning with models that range in size between 750 million and 178 billion parameters, and show substantial improvements for tasks with diverse input and output spaces. We show additional benefits in other settings where long context windows may be beneficial: multi-hop questions and retrieval-augmented question answering with multiple retrieved documents. Our results highlight Parallel Context Windows as a promising method for applying off-the-shelf LLMs in a range of settings that require long text sequences. We make our code publicly available at https://github.com/ai21labs/parallel-context-windows.
Generating Benchmarks for Factuality Evaluation of Language Models
Muhlgay, Dor, Ram, Ori, Magar, Inbal, Levine, Yoav, Ratner, Nir, Belinkov, Yonatan, Abend, Omri, Leyton-Brown, Kevin, Shashua, Amnon, Shoham, Yoav
Before deploying a language model (LM) within a given domain, it is important to measure its tendency to generate factually incorrect information in that domain. Existing factual generation evaluation methods focus on facts sampled from the LM itself, and thus do not control the set of evaluated facts and might under-represent rare and unlikely facts. We propose FACTOR: Factual Assessment via Corpus TransfORmation, a scalable approach for evaluating LM factuality. FACTOR automatically transforms a factual corpus of interest into a benchmark evaluating an LM's propensity to generate true facts from the corpus vs. similar but incorrect statements. We use our framework to create two benchmarks: Wiki-FACTOR and News-FACTOR. We show that: (i) our benchmark scores increase with model size and improve when the LM is augmented with retrieval; (ii) benchmark score correlates with perplexity, but the two metrics do not always agree on model ranking; and (iii) when perplexity and benchmark score disagree, the latter better reflects factuality in open-ended generation, as measured by human annotators. We make our data and code publicly available in https://github.com/AI21Labs/factor.
Evaluating and Improving the Coreference Capabilities of Machine Translation Models
Yehudai, Asaf, Cattan, Arie, Abend, Omri, Stanovsky, Gabriel
Machine translation (MT) requires a wide range of linguistic capabilities, which current end-to-end models are expected to learn implicitly by observing aligned sentences in bilingual corpora. In this work, we ask: \emph{How well do MT models learn coreference resolution from implicit signal?} To answer this question, we develop an evaluation methodology that derives coreference clusters from MT output and evaluates them without requiring annotations in the target language. We further evaluate several prominent open-source and commercial MT systems, translating from English to six target languages, and compare them to state-of-the-art coreference resolvers on three challenging benchmarks. Our results show that the monolingual resolvers greatly outperform MT models. Motivated by this result, we experiment with different methods for incorporating the output of coreference resolution models in MT, showing improvement over strong baselines.
A Large-Scale Multilingual Study of Visual Constraints on Linguistic Selection of Descriptions
Berger, Uri, Frermann, Lea, Stanovsky, Gabriel, Abend, Omri
We present a large, multilingual study into how vision constrains linguistic choice, covering four languages and five linguistic properties, such as verb transitivity or use of numerals. We propose a novel method that leverages existing corpora of images with captions written by native speakers, and apply it to nine corpora, comprising 600k images and 3M captions. We study the relation between visual input and linguistic choices by training classifiers to predict the probability of expressing a property from raw images, and find evidence supporting the claim that linguistic properties are constrained by visual context across languages. We complement this investigation with a corpus study, taking the test case of numerals. Specifically, we use existing annotations (number or type of objects) to investigate the effect of different visual conditions on the use of numeral expressions in captions, and show that similar patterns emerge across languages. Our methods and findings both confirm and extend existing research in the cognitive literature. We additionally discuss possible applications for language generation.
PreQuEL: Quality Estimation of Machine Translation Outputs in Advance
Don-Yehiya, Shachar, Choshen, Leshem, Abend, Omri
We present the task of PreQuEL, Pre-(Quality-Estimation) Learning. A PreQuEL system predicts how well a given sentence will be translated, without recourse to the actual translation, thus eschewing unnecessary resource allocation when translation quality is bound to be low. PreQuEL can be defined relative to a given MT system (e.g., some industry service) or generally relative to the state-of-the-art. From a theoretical perspective, PreQuEL places the focus on the source text, tracing properties, possibly linguistic features, that make a sentence harder to machine translate. We develop a baseline model for the task and analyze its performance. We also develop a data augmentation method (from parallel corpora), that improves results substantially. We show that this augmentation method can improve the performance of the Quality-Estimation task as well. We investigate the properties of the input text that our model is sensitive to, by testing it on challenge sets and different languages. We conclude that it is aware of syntactic and semantic distinctions, and correlates and even over-emphasizes the importance of standard NLP features.