Abdennadher, Slim
A Survey of Code-switched Arabic NLP: Progress, Challenges, and Future Directions
Hamed, Injy, Sabty, Caroline, Abdennadher, Slim, Vu, Ngoc Thang, Solorio, Thamar, Habash, Nizar
Language in the Arab world presents a complex diglossic and multilingual setting, involving the use of Modern Standard Arabic, various dialects and sub-dialects, as well as multiple European languages. This diverse linguistic landscape has given rise to code-switching, both within Arabic varieties and between Arabic and foreign languages. The widespread occurrence of code-switching across the region makes it vital to address these linguistic needs when developing language technologies. In this paper, we provide a review of the current literature in the field of code-switched Arabic NLP, offering a broad perspective on ongoing efforts, challenges, research gaps, and recommendations for future research directions.
Exploring Segmentation Approaches for Neural Machine Translation of Code-Switched Egyptian Arabic-English Text
Gaser, Marwa, Mager, Manuel, Hamed, Injy, Habash, Nizar, Abdennadher, Slim, Vu, Ngoc Thang
Data sparsity is one of the main challenges posed by code-switching (CS), which is further exacerbated in the case of morphologically rich languages. For the task of machine translation (MT), morphological segmentation has proven successful in alleviating data sparsity in monolingual contexts; however, it has not been investigated for CS settings. In this paper, we study the effectiveness of different segmentation approaches on MT performance, covering morphology-based and frequency-based segmentation techniques. We experiment on MT from code-switched Arabic-English to English. We provide detailed analysis, examining a variety of conditions, such as data size and sentences with different degrees of CS. Empirical results show that morphology-aware segmenters perform the best in segmentation tasks but under-perform in MT. Nevertheless, we find that the choice of the segmentation setup to use for MT is highly dependent on the data size. For extreme low-resource scenarios, a combination of frequency and morphology-based segmentations is shown to perform the best. For more resourced settings, such a combination does not bring significant improvements over the use of frequency-based segmentation.
Investigating Lexical Replacements for Arabic-English Code-Switched Data Augmentation
Hamed, Injy, Habash, Nizar, Abdennadher, Slim, Vu, Ngoc Thang
Data sparsity is a main problem hindering the development of code-switching (CS) NLP systems. In this paper, we investigate data augmentation techniques for synthesizing dialectal Arabic-English CS text. We perform lexical replacements using word-aligned parallel corpora where CS points are either randomly chosen or learnt using a sequence-to-sequence model. We compare these approaches against dictionary-based replacements. We assess the quality of the generated sentences through human evaluation and evaluate the effectiveness of data augmentation on machine translation (MT), automatic speech recognition (ASR), and speech translation (ST) tasks. Results show that using a predictive model results in more natural CS sentences compared to the random approach, as reported in human judgements. In the downstream tasks, despite the random approach generating more data, both approaches perform equally (outperforming dictionary-based replacements). Overall, data augmentation achieves 34% improvement in perplexity, 5.2% relative improvement on WER for ASR task, +4.0-5.1 BLEU points on MT task, and +2.1-2.2 BLEU points on ST over a baseline trained on available data without augmentation.
ArzEn-ST: A Three-way Speech Translation Corpus for Code-Switched Egyptian Arabic - English
Hamed, Injy, Habash, Nizar, Abdennadher, Slim, Vu, Ngoc Thang
We present our work on collecting ArzEn-ST, a code-switched Egyptian Arabic - English Speech Translation Corpus. This corpus is an extension of the ArzEn speech corpus, which was collected through informal interviews with bilingual speakers. In this work, we collect translations in both directions, monolingual Egyptian Arabic and monolingual English, forming a three-way speech translation corpus. We make the translation guidelines and corpus publicly available. We also report results for baseline systems for machine translation and speech translation tasks. We believe this is a valuable resource that can motivate and facilitate further research studying the code-switching phenomenon from a linguistic perspective and can be used to train and evaluate NLP systems.
The Who in Code-Switching: A Case Study for Predicting Egyptian Arabic-English Code-Switching Levels based on Character Profiles
Hamed, Injy, Bolock, Alia El, Herbert, Cornelia, Abdennadher, Slim, Vu, Ngoc Thang
Code-switching (CS) is a common linguistic phenomenon exhibited by multilingual individuals, where they tend to alternate between languages within one single conversation. CS is a complex phenomenon that not only encompasses linguistic challenges, but also contains a great deal of complexity in terms of its dynamic behaviour across speakers. Given that the factors giving rise to CS vary from one country to the other, as well as from one person to the other, CS is found to be a speaker-dependant behaviour, where the frequency by which the foreign language is embedded differs across speakers. While several researchers have looked into predicting CS behaviour from a linguistic point of view, research is still lacking in the task of predicting user CS behaviour from sociological and psychological perspectives. We provide an empirical user study, where we investigate the correlations between users' CS levels and character traits. We conduct interviews with bilinguals and gather information on their profiles, including their demographics, personality traits, and traveling experiences. We then use machine learning (ML) to predict users' CS levels based on their profiles, where we identify the main influential factors in the modeling process. We experiment with both classification as well as regression tasks. Our results show that the CS behaviour is affected by the relation between speakers, travel experiences as well as Neuroticism and Extraversion personality traits.