Goto

Collaborating Authors

 Abad, Alberto


Improving Membership Inference in ASR Model Auditing with Perturbed Loss Features

arXiv.org Artificial Intelligence

Membership Inference (MI) poses a substantial privacy threat to the training data of Automatic Speech Recognition (ASR) systems, while also offering an opportunity to audit these models with regard to user data. This paper explores the effectiveness of loss-based features in combination with Gaussian and adversarial perturbations to perform MI in ASR models. To the best of our knowledge, this approach has not yet been investigated. We compare our proposed features with commonly used error-based features and find that the proposed features greatly enhance performance for sample-level MI. For speaker-level MI, these features improve results, though by a smaller margin, as error-based features already obtained a high performance for this task. Our findings emphasise the importance of considering different feature sets and levels of access to target models for effective MI in ASR systems, providing valuable insights for auditing such models.


Memory-augmented conformer for improved end-to-end long-form ASR

arXiv.org Artificial Intelligence

Conformers have recently been proposed as a promising modelling approach for automatic speech recognition (ASR), outperforming recurrent neural network-based approaches and transformers. Nevertheless, in general, the performance of these end-to-end models, especially attention-based models, is particularly degraded in the case of long utterances. To address this limitation, we propose adding a fully-differentiable memory-augmented neural network between the encoder and decoder of a conformer. This external memory can enrich the generalization for longer utterances since it allows the system to store and retrieve more information recurrently. Notably, we explore the neural Turing machine (NTM) that results in our proposed Conformer-NTM model architecture for ASR. Experimental results using Librispeech train-clean-100 and train-960 sets show that the proposed system outperforms the baseline conformer without memory for long utterances.


Attentive Filtering Networks for Audio Replay Attack Detection

arXiv.org Machine Learning

ABSTRACT An attacker may use a variety of techniques to fool an automatic speaker verification system into accepting them as a genuine user. Anti-spoofing methods meanwhile aim to make the system robust against such attacks. The ASVspoof 2017 Challenge focused specifically on replay attacks, with the intention of measuring the limits of replay attack detection as well as developing countermeasures against them. In this work, we propose our replay attacks detection system - Attentive Filtering Network, which is composed of an attention-based filtering mechanism that enhances feature representations in both the frequency and time domains, and a ResNet-based classifier. We show that the network enables us to visualize the automatically acquired feature representations that are helpful for spoofing detection. Index Terms-- ASVspoof, Anti-Spoofing, Spoofing Attack, Replay Attacks, Automatic Speaker Verification 1. INTRODUCTION Automatic speaker verification (ASV) systems have become increasingly widespread in recent years with the advent of voice assistant and smart home devices.