data mining
DeformableTST: Transformer for Time Series Forecasting without Over-reliance on Patching
With the proposal of patching technique in time series forecasting, Transformerbased models have achieved compelling performance and gained great interest from the time series community. But at the same time, we observe a new problem that the recent Transformer-based models are overly reliant on patching to achieve ideal performance, which limits their applicability to some forecasting tasks unsuitable for patching. In this paper, we intent to handle this emerging issue. Through diving into the relationship between patching and full attention (the core mechanism in Transformer-based models), we further find out the reason behind this issue is that full attention relies overly on the guidance of patching to focus on the important time points and learn non-trivial temporal representation. Based on this finding, we propose DeformableTST as an effective solution to this emerging issue. Specifically, we propose deformable attention, a sparse attention mechanism that can better focus on the important time points by itself, to get rid of the need of patching. And we also adopt a hierarchical structure to alleviate the efficiency issue caused by the removal of patching. Experimentally, our DeformableTST achieves the consistent state-of-the-art performance in a broader range of time series tasks, especially achieving promising performance in forecasting tasks unsuitable for patching, therefore successfully reducing the reliance on patching and broadening the applicability of Transformer-based models.
PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection
Zero-shot (ZS) 3D anomaly detection is a crucial yet unexplored field that addresses scenarios where target 3D training samples are unavailable due to practical concerns like privacy protection. This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects. PointAD provides a unified framework to comprehend 3D anomalies from both points and pixels.
Learning Versatile Skills with Curriculum Masking Yao Tang 1 Zichuan Lin 2 Deheng Ye2
Masked prediction has emerged as a promising pretraining paradigm in offline reinforcement learning (RL) due to its versatile masking schemes, enabling flexible inference across various downstream tasks with a unified model. Despite the versatility of masked prediction, it remains unclear how to balance the learning of skills at different levels of complexity. To address this, we propose CurrMask, a curriculum masking pretraining paradigm for sequential decision making. Motivated by how humans learn by organizing knowledge in a curriculum, CurrMask adjusts its masking scheme during pretraining for learning versatile skills. Through extensive experiments, we show that CurrMask exhibits superior zero-shot performance on skill prompting tasks, goal-conditioned planning tasks, and competitive finetuning performance on offline RL tasks. Additionally, our analysis of training dynamics reveals that CurrMask gradually acquires skills of varying complexity by dynamically adjusting its masking scheme. Code is available at here.
Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection Ying Yang 1
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based method provides a good alternative approach, by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face the key dilemma, i.e., improving the reconstruction power of the generative model, while keeping compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. Through distorting the extracted features with Gaussian noises and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at https://github.com/xbyym/DLSR.
Capturing the Denoising Effect of PCA via Compression Ratio
Principal component analysis (PCA) is one of the most fundamental tools in machine learning with broad use as a dimensionality reduction and denoising tool. In the later setting, while PCA is known to be effective at subspace recovery and is proven to aid clustering algorithms in some specific settings, its improvement of noisy data is still not well quantified in general. In this paper, we propose a novel metric called compression ratio to capture the effect of PCA on high-dimensional noisy data. We show that, for data with underlying community structure, PCA significantly reduces the distance of data points belonging to the same community while reducing inter-community distance relatively mildly. We explain this phenomenon through both theoretical proofs and experiments on real-world data.
Rethinking Fourier Transform from A Basis Functions Perspective for Long-term Time Series Forecasting 1 1
The interaction between Fourier transform and deep learning opens new avenues for long-term time series forecasting (LTSF). We propose a new perspective to reconsider the Fourier transform from a basis functions perspective. Specifically, the real and imaginary parts of the frequency components can be viewed as the coefficients of cosine and sine basis functions at tiered frequency levels, respectively. We argue existing Fourier-based methods do not involve basis functions thus fail to interpret frequency coefficients precisely and consider the time-frequency relationship sufficiently, leading to inconsistent starting cycles and inconsistent series length issues.
Iterative Methods via Locally Evolving Set Process Baojian Zhou 1,2 Yifan Sun 3
Given the damping factor α and precision tolerance ϵ, Andersen et al. [2] introduced Approximate Personalized PageRank (APPR), the de facto local method for approximating the PPR vector, with runtime bounded by Θ(1/(αϵ)) independent of the graph size. Recently, Fountoulakis & Yang [12] asked whether faster local algorithms could be developed using Õ(1/( αϵ)) operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of whether standard iterative solvers can be effectively localized. We propose to use the locally evolving set process, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized.