Goto

Collaborating Authors

 data mining


PointAD: Comprehending 3D Anomalies from Points and Pixels for Zero-shot 3D Anomaly Detection

Neural Information Processing Systems

Zero-shot (ZS) 3D anomaly detection is a crucial yet unexplored field that addresses scenarios where target 3D training samples are unavailable due to practical concerns like privacy protection. This paper introduces PointAD, a novel approach that transfers the strong generalization capabilities of CLIP for recognizing 3D anomalies on unseen objects. PointAD provides a unified framework to comprehend 3D anomalies from both points and pixels.


Learning Versatile Skills with Curriculum Masking Yao Tang 1 Zichuan Lin 2 Deheng Ye2

Neural Information Processing Systems

Masked prediction has emerged as a promising pretraining paradigm in offline reinforcement learning (RL) due to its versatile masking schemes, enabling flexible inference across various downstream tasks with a unified model. Despite the versatility of masked prediction, it remains unclear how to balance the learning of skills at different levels of complexity. To address this, we propose CurrMask, a curriculum masking pretraining paradigm for sequential decision making. Motivated by how humans learn by organizing knowledge in a curriculum, CurrMask adjusts its masking scheme during pretraining for learning versatile skills. Through extensive experiments, we show that CurrMask exhibits superior zero-shot performance on skill prompting tasks, goal-conditioned planning tasks, and competitive finetuning performance on offline RL tasks. Additionally, our analysis of training dynamics reveals that CurrMask gradually acquires skills of varying complexity by dynamically adjusting its masking scheme. Code is available at here.


Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection Ying Yang 1

Neural Information Processing Systems

Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based method provides a good alternative approach, by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face the key dilemma, i.e., improving the reconstruction power of the generative model, while keeping compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. Through distorting the extracted features with Gaussian noises and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at https://github.com/xbyym/DLSR.


Capturing the Denoising Effect of PCA via Compression Ratio

Neural Information Processing Systems

Principal component analysis (PCA) is one of the most fundamental tools in machine learning with broad use as a dimensionality reduction and denoising tool. In the later setting, while PCA is known to be effective at subspace recovery and is proven to aid clustering algorithms in some specific settings, its improvement of noisy data is still not well quantified in general. In this paper, we propose a novel metric called compression ratio to capture the effect of PCA on high-dimensional noisy data. We show that, for data with underlying community structure, PCA significantly reduces the distance of data points belonging to the same community while reducing inter-community distance relatively mildly. We explain this phenomenon through both theoretical proofs and experiments on real-world data.


Public-data Assisted Private Stochastic Optimization: Power and Limitations

Neural Information Processing Systems

We study the limits and capability of public-data assisted differentially private (P A-DP) algorithms. Specifically, we focus on the problem of stochastic convex optimization (SCO) with either labeled or unlabeled public data.



Rethinking Fourier Transform from A Basis Functions Perspective for Long-term Time Series Forecasting 1 1

Neural Information Processing Systems

The interaction between Fourier transform and deep learning opens new avenues for long-term time series forecasting (LTSF). We propose a new perspective to reconsider the Fourier transform from a basis functions perspective. Specifically, the real and imaginary parts of the frequency components can be viewed as the coefficients of cosine and sine basis functions at tiered frequency levels, respectively. We argue existing Fourier-based methods do not involve basis functions thus fail to interpret frequency coefficients precisely and consider the time-frequency relationship sufficiently, leading to inconsistent starting cycles and inconsistent series length issues.



Iterative Methods via Locally Evolving Set Process Baojian Zhou 1,2 Yifan Sun 3

Neural Information Processing Systems

Given the damping factor α and precision tolerance ϵ, Andersen et al. [2] introduced Approximate Personalized PageRank (APPR), the de facto local method for approximating the PPR vector, with runtime bounded by Θ(1/(αϵ)) independent of the graph size. Recently, Fountoulakis & Yang [12] asked whether faster local algorithms could be developed using Õ(1/( αϵ)) operations. By noticing that APPR is a local variant of Gauss-Seidel, this paper explores the question of whether standard iterative solvers can be effectively localized. We propose to use the locally evolving set process, a novel framework to characterize the algorithm locality, and demonstrate that many standard solvers can be effectively localized.


Improving Temporal Link Prediction via Temporal Walk Matrix Projection CCSE Lab, Beihang University CCSE Lab, Beihang University Beijing, China

Neural Information Processing Systems

Temporal link prediction, aiming at predicting future interactions among entities based on historical interactions, is crucial for a series of real-world applications. Although previous methods have demonstrated the importance of relative encodings for effective temporal link prediction, computational efficiency remains a major concern in constructing these encodings. Moreover, existing relative encodings are usually constructed based on structural connectivity, where temporal information is seldom considered. To address the aforementioned issues, we first analyze existing relative encodings and unify them as a function of temporal walk matrices. This unification establishes a connection between relative encodings and temporal walk matrices, providing a more principled way for analyzing and designing relative encodings. Based on this analysis, we propose a new temporal graph neural network called TPNet, which introduces a temporal walk matrix that incorporates the time decay effect to simultaneously consider both temporal and structural information. Moreover, TPNet designs a random feature propagation mechanism with theoretical guarantees to implicitly maintain the temporal walk matrices, which improves the computation and storage efficiency. Experimental results on 13 benchmark datasets verify the effectiveness and efficiency of TPNet, where TPNet outperforms other baselines on most datasets and achieves a maximum speedup of 33.3 compared to the SOTA baseline. Our code can be found at https://github.com/lxd99/TPNet.