Goto

Collaborating Authors

 Country


Interview with Gillian Hadfield: Normative infrastructure for AI alignment

AIHub

During the 33rd International Joint Conference on Artificial Intelligence (IJCAI), held in Jeju, I had the opportunity to meet with one of the keynote speakers, Gillian Hadfield. We spoke about her interdisciplinary research, career trajectory, path into AI alignment, law, and general thoughts on AI systems. Transcript: Note: the transcript has been lightly edited for clarity. This is an interview with Professor Gillian Hadfield who was a keynote speaker at IJCAI 2024. She gave a very insightful talk about normative infrastructures and how they can guide our search for AI alignment. Kumar Kshitij Patel (KKP): Could you talk a bit about your background and career trajectory? I want our readers to understand how much interdisciplinary work you've done over the years. Gillian Hadfield (GH): I did a PhD in economics and a law degree, a JD, at Stanford, originally motivated by wanting to think about the big questions about the world. So I read John Rawls' theory of justice when I was an undergraduate, and those are the big questions: how do we organize the world and just institutions, but I was very interested in using more formal methods and social scientific approaches. That's why I decided to do that joint degree. So, this is in the 1980s, and in the early days of starting to use a lot of game theory. I studied information theory, a student of Canaro and Paul Milgram at the economics department at Stanford. I did work on contract theory, bargaining theory, but I was still very interested in going to law school, not to practice law, but to learn about legal institutions and how those work. I was a member of this emerging area of law and economics early in my career, which of course, was interdisciplinary, using economics to think about law and legal institutions.


Wheeled, rugged robot dog built for extreme industrial missions

FOX News

The machine is designed to inspect industrial sites, respond to disasters, carry out logistics operations and support scientific research. Deep Robotics, a company from China, has unveiled a durable four-legged robot built to operate in extreme environments that humans struggle to traverse. It's called the Lynx M20, and it builds upon the agility of its predecessor, the Lynx robot dog. This versatile machine is designed to handle anything from inspecting industrial sites and responding to disasters to carrying out logistics operations and supporting scientific research. Here's what you need to know.


AI Melania: First lady embarks on 'new frontier' in publishing with audiobook of memoir

FOX News

EXCLUSIVE: First lady Melania Trump is launching an audiobook of her memoir using artificial intelligence (AI) audio technology in multiple languages, Fox News Digital has learned. The first lady released her first memoir, "Melania," last year. This week, she is breaking new ground by releasing "Melania, the Audiobook," which has been "created entirely" with AI. "I am proud to be at the forefront of publishing's new frontier โ€“ the intersection of artificial intelligence technology and audio," Trump told Fox News Digital. The first lady said ElevenLabs AI developed "an AI-generated replica of my voice under strict supervision, which will establish an unforgettable connection with my personal story, in multiple languages for listeners worldwide." ElevenLabs AI CEO Mati Staniszewski told Fox News Digital that they are "excited that Melania Trump trusted our technology to power this first-of-its-kind audiobook project."


ICNet: Intra-saliency Correlation Network for Co-Saliency Detection

Neural Information Processing Systems

Model-based methods produce coarse Co-SOD results due to hand-crafted intra-and inter-saliency features. Current data-driven models exploit inter-saliency cues, but undervalue the potential power of intra-saliency cues. In this paper, we propose an Intra-saliency Correlation Network (ICNet) to extract intra-saliency cues from the single image saliency maps (SISMs) predicted by any off-the-shelf SOD method, and obtain inter-saliency cues by correlation techniques. Specifically, we adopt normalized masked average pooling (NMAP) to extract latent intra-saliency categories from the SISMs and semantic features as intra cues. Then we employ a correlation fusion module (CFM) to obtain inter cues by exploiting correlations between the intra cues and single-image features. To improve Co-SOD performance, we propose a category-independent rearranged self-correlation feature (RSCF) strategy. Experiments on three benchmarks show that our ICNet outperforms previous state-of-the-art methods on Co-SOD.


'Shakespeare would be writing for games today': Cannes' first video game Lili is a retelling of Macbeth

The Guardian

The Cannes film festival isn't typically associated with video games, but this year it's playing host to an unusual collaboration. Lili is a co-production between the New York-based game studio iNK Stories (creator of 1979 Revolution: Black Friday, about a photojournalist in Iran) and the Royal Shakespeare Company, and it's been turning heads with its eye-catching translocation of Macbeth to modern-day Iran. "It's been such an incredible coup to have it as the first video game experience at Cannes," says iNK Stories co-founder Vassiliki Khonsari. "People have gone in saying, I'm not familiar playing games, so I may just try it out for five minutes. The Cannes festival's Immersive Competition began in 2024, although the lineup doesn't usually feature traditional video games. "VR films and projection mapping is the thrust of it," says iNK Stories' other co-founder, Vassiliki's husband Navid Khonsari. But Lili weaves live-action footage with video game mechanics in a similar way to a game such as Telling Lies or Immortality. Its lead, Zar Amir Ebrahimi, won best actress at Cannes three years ago. Lili focuses on the story of Lady Macbeth, here cast as the ambitious wife of an upwardly mobile officer in the Basij (a paramilitary volunteer militia within the Islamic Revolutionary Guard in Iran). As in the play, she plots a murder to secure her husband's rise. "I think that the narrative of Lady Macbeth is that she's manipulative, and that's exactly what got us interested," says Navid. "The social limitations based on her gender forced her to try to attain whatever leadership role she can," he continues. "If she was a man, she would have been one of the greatest kings that country would have ever experienced, but because she was a woman she had to work within the structure that was there for her.


Dogs can fulfill our need to nurture

Popular Science

Breakthroughs, discoveries, and DIY tips sent every weekday. Just as birth rates decline in many wealthy and developed nations, dog parenting is remaining steady and even gaining in popularity. Up to half of households in Europe and 66 percent of homes in the United States have at least one dog and these pets are often regarded as a family member or "fur baby." To dig into what this shift says about our society, researchers from Eรถtvรถs Lorรกnd University in Budapest, Hungary conducted a literature review to analyze the data. They propose that while dogs do not replace children, they can offer a chance to fulfill an innate nurturing drive similar to parenting, but with fewer demands than raising biological children.


SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement

Neural Information Processing Systems

Large scale training requires massive parallelism to finish the training within a reasonable amount of time. To support massive parallelism, large batch training is the key enabler but often at the cost of generalization performance. Existing works explore adaptive batching or hand-tuned static large batching, in order to strike a balance between the computational efficiency and the performance. However, these methods can provide only coarse-grained adaption (e.g., at a epoch level) due to the intrinsic expensive calculation or hand tuning requirements. In this paper, we propose a fully automated and lightweight adaptive batching methodology to enable fine-grained batch size adaption (e.g., at a mini-batch level) that can achieve stateof-the-art performance with record breaking batch sizes. The core component of our method is a lightweight yet efficient representation of the critical gradient noise information. We open-source the proposed methodology by providing a plugin tool that supports mainstream machine learning frameworks. Extensive evaluations on popular benchmarks (e.g., CIFAR10, ImageNet, and BERT-Large) demonstrate that the proposed methodology outperforms state-of-the-art methodologies using adaptive batching approaches or hand-tuned static strategies in both performance and batch size. Particularly, we achieve a new state-of-the-art batch size of 78k in BERT-Large pretraining with SQuAD score 90.69 compared to 90.58 reported in previous state-of-the-art with 59k batch size.


LexEval: A Comprehensive Chinese Legal Benchmark for Evaluating Large Language Models You Chen Department of Computer Science Department of Computer Science Tsinghua University

Neural Information Processing Systems

Large language models (LLMs) have made significant progress in natural language processing tasks and demonstrate considerable potential in the legal domain. However, legal applications demand high standards of accuracy, reliability, and fairness. Applying existing LLMs to legal systems without careful evaluation of their potential and limitations could pose significant risks in legal practice. To this end, we introduce a standardized comprehensive Chinese legal benchmark LexEval. This benchmark is notable in the following three aspects: (1) Ability Modeling: We propose a new taxonomy of legal cognitive abilities to organize different tasks.


A Tight Lower Bound and Efficient Reduction for Swap Regret

Neural Information Processing Systems

Swap regret, a generic performance measure of online decision-making algorithms, plays an important role in the theory of repeated games, along with a close connection to correlated equilibria in strategic games. This paper shows an (p TN log N)-lower bound for swap regret, where T and N denote the numbers of time steps and available actions, respectively. Our lower bound is tight up to a constant, and resolves an open problem mentioned, e.g., in the book by Nisan et al. [28]. Besides, we present a computationally efficient reduction method that converts no-external-regret algorithms to no-swap-regret algorithms. This method can be applied not only to the full-information setting but also to the bandit setting and provides a better regret bound than previous results.


Nested Variational Inference Hao Wu Jan-Willem van de Meent

Neural Information Processing Systems

We develop nested variational inference (NVI), a family of methods that learn proposals for nested importance samplers by minimizing an forward or reverse KL divergence at each level of nesting. NVI is applicable to many commonly-used importance sampling strategies and provides a mechanism for learning intermediate densities, which can serve as heuristics to guide the sampler. Our experiments apply NVI to (a) sample from a multimodal distribution using a learned annealing path (b) learn heuristics that approximate the likelihood of future observations in a hidden Markov model and (c) to perform amortized inference in hierarchical deep generative models. We observe that optimizing nested objectives leads to improved sample quality in terms of log average weight and effective sample size.