Information Technology
Distance Metric Learning with Application to Clustering with Side-Information
Xing, Eric P., Jordan, Michael I., Russell, Stuart J., Ng, Andrew Y.
Many algorithms rely critically on being given a good metric over their inputs. For instance, data can often be clustered in many "plausible" ways, and if a clustering algorithm such as K-means initially fails to find one that is meaningful to a user, the only recourse may be for the user to manually tweak the metric until sufficiently good clusters are found. For these and other applications requiring good metrics, it is desirable that we provide a more systematic way for users to indicate what they consider "similar." For instance, we may ask them to provide examples.
Concentration Inequalities for the Missing Mass and for Histogram Rule Error
Ortiz, Luis E., McAllester, David A.
This paper gives distribution-free concentration inequalities for the missing mass and the error rate of histogram rules. Negative association methods can be used to reduce these concentration problems to concentration questions about independent sums. Although the sums are independent, they are highly heterogeneous. Such highly heterogeneous independent sums cannot be analyzed using standard concentration inequalities such as Hoeffding's inequality, the Angluin-Valiant bound, Bernstein's inequality, Bennett's inequality, or McDiarmid's theorem.
A Neural Edge-Detection Model for Enhanced Auditory Sensitivity in Modulated Noise
Fishbach, Alon, May, Bradford J.
Psychophysical data suggest that temporal modulations of stimulus amplitude envelopes play a prominent role in the perceptual segregation of concurrent sounds. In particular, the detection of an unmodulated signal can be significantly improved by adding amplitude modulation to the spectral envelope of a competing masking noise. This perceptual phenomenon is known as "Comodulation Masking Release" (CMR). Despite the obvious influence of temporal structure on the perception of complex auditory scenes, the physiological mechanisms that contribute to CMR and auditory streaming are not well known. A recent physiological study by Nelken and colleagues has demonstrated an enhanced cortical representation of auditory signals in modulated noise. Our study evaluates these CMR-like response patterns from the perspective of a hypothetical auditory edge-detection neuron. It is shown that this simple neural model for the detection of amplitude transients can reproduce not only the physiological data of Nelken et al., but also, in light of previous results, a variety of physiological and psychoacoustical phenomena that are related to the perceptual segregation of concurrent sounds.
Spectro-Temporal Receptive Fields of Subthreshold Responses in Auditory Cortex
Machens, Christian K., Wehr, Michael, Zador, Anthony M.
How do cortical neurons represent the acoustic environment? This question is often addressed by probing with simple stimuli such as clicks or tone pips. Such stimuli have the advantage of yielding easily interpreted answers, but have the disadvantage that they may fail to uncover complex or higher-order neuronal response properties. Here we adopt an alternative approach, probing neuronal responses with complex acoustic stimuli, including animal vocalizations and music. We have used in vivo whole cell methods in the rat auditory cortex to record subthreshold membrane potential fluctuations elicited by these stimuli.
Automatic Alignment of Local Representations
We present an automatic alignment procedure which maps the disparate internal representations learned by several local dimensionality reduction experts into a single, coherent global coordinate system for the original data space. Our algorithm can be applied to any set of experts, each of which produces a low-dimensional local representation of a highdimensional input. Unlike recent efforts to coordinate such models by modifying their objective functions [1, 2], our algorithm is invoked after training and applies an efficient eigensolver to post-process the trained models. The post-processing has no local optima and the size of the system it must solve scales with the number of local models rather than the number of original data points, making it more efficient than model-free algorithms such as Isomap [3] or LLE [4].
Dopamine Induced Bistability Enhances Signal Processing in Spiny Neurons
Gruber, Aaron J., Solla, Sara A., Houk, James C.
Single unit activity in the striatum of awake monkeys shows a marked dependence on the expected reward that a behavior will elicit. We present a computational model of spiny neurons, the principal neurons of the striatum, to assess the hypothesis that direct neuromodulatory effects of dopamine through the activation of D 1 receptors mediate the reward dependency of spiny neuron activity. Dopamine release results in the amplification of key ion currents, leading to the emergence of bistability, which not only modulates the peak firing rate but also introduces a temporal and state dependence of the model's response, thus improving the detectability of temporally correlated inputs. 1 Introduction The classic notion of the basal ganglia as being involved in purely motor processing has expanded over the years to include sensory and cognitive functions. A surprising new finding is that much of this activity shows a motivational component. For instance, striatal activity related to visual stimuli is dependent on the type of reinforcement (primary vs secondary) that a behavior will elicit [1].
Identity Uncertainty and Citation Matching
Pasula, Hanna, Marthi, Bhaskara, Milch, Brian, Russell, Stuart J., Shpitser, Ilya
Identity uncertainty is a pervasive problem in real-world data analysis. It arises whenever objects are not labeled with unique identifiers or when those identifiers may not be perceived perfectly. In such cases, two observations may or may not correspond to the same object. In this paper, we consider the problem in the context of citation matching--the problem of deciding which citations correspond to the same publication. Our approach is based on the use of a relational probability model to define a generative model for the domain, including models of author and title corruption and a probabilistic citation grammar. Identity uncertainty is handled by extending standard models to incorporate probabilities over the possible mappings between terms in the language and objects in the domain. Inference is based on Markov chain Monte Carlo, augmented with specific methods for generating efficient proposals when the domain contains many objects. Results on several citation data sets show that the method outperforms current algorithms for citation matching. The declarative, relational nature of the model also means that our algorithm can determine object characteristics such as author names by combining multiple citations of multiple papers.
A Statistical Mechanics Approach to Approximate Analytical Bootstrap Averages
Malzahn, Dรถrthe, Opper, Manfred
We apply the replica method of Statistical Physics combined with a variational method to the approximate analytical computation of bootstrap averages for estimating the generalization error. We demonstrate our approach on regression with Gaussian processes and compare our results with averages obtained by Monte-Carlo sampling.
"Name That Song!" A Probabilistic Approach to Querying on Music and Text
Eric, Brochu, Freitas, Nando de
We present a novel, flexible statistical approach for modelling music and text jointly. The approach is based on multi-modal mixture models and maximum a posteriori estimation using EM. The learned models can be used to browse databases with documents containing music and text, to search for music using queries consisting of music and text (lyrics and other contextual information), to annotate text documents with music, and to automatically recommend or identify similar songs.
Theory-Based Causal Inference
Tenenbaum, Joshua B., Griffiths, Thomas L.
People routinely make sophisticated causal inferences unconsciously, effortlessly, and from very little data - often from just one or a few observations. We argue that these inferences can be explained as Bayesian computations over a hypothesis space of causal graphical models, shaped by strong top-down prior knowledge in the form of intuitive theories.